diff --git a/DIRECTORY.md b/DIRECTORY.md index c07e1550..1e3711fe 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1,17 +1,4 @@ -## Arithmetic Analysis - * [Bisection](arithmetic_analysis/bisection.py) - * [Gaussian Elimination](arithmetic_analysis/gaussian_elimination.py) - * [In Static Equilibrium](arithmetic_analysis/in_static_equilibrium.py) - * [Intersection](arithmetic_analysis/intersection.py) - * [Jacobi Iteration Method](arithmetic_analysis/jacobi_iteration_method.py) - * [Lu Decomposition](arithmetic_analysis/lu_decomposition.py) - * [Newton Forward Interpolation](arithmetic_analysis/newton_forward_interpolation.py) - * [Newton Method](arithmetic_analysis/newton_method.py) - * [Newton Raphson](arithmetic_analysis/newton_raphson.py) - * [Newton Raphson New](arithmetic_analysis/newton_raphson_new.py) - * [Secant Method](arithmetic_analysis/secant_method.py) - ## Audio Filters * [Butterworth Filter](audio_filters/butterworth_filter.py) * [Iir Filter](audio_filters/iir_filter.py) @@ -520,6 +507,9 @@ * [Test Knapsack](knapsack/tests/test_knapsack.py) ## Linear Algebra + * [Gaussian Elimination](linear_algebra/gaussian_elimination.py) + * [Jacobi Iteration Method](linear_algebra/jacobi_iteration_method.py) + * [Lu Decomposition](linear_algebra/lu_decomposition.py) * Src * [Conjugate Gradient](linear_algebra/src/conjugate_gradient.py) * [Lib](linear_algebra/src/lib.py) @@ -583,7 +573,6 @@ * [Binary Multiplication](maths/binary_multiplication.py) * [Binomial Coefficient](maths/binomial_coefficient.py) * [Binomial Distribution](maths/binomial_distribution.py) - * [Bisection](maths/bisection.py) * [Ceil](maths/ceil.py) * [Chebyshev Distance](maths/chebyshev_distance.py) * [Check Polygon](maths/check_polygon.py) @@ -617,7 +606,6 @@ * [Germain Primes](maths/germain_primes.py) * [Greatest Common Divisor](maths/greatest_common_divisor.py) * [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py) - * [Integration By Simpson Approx](maths/integration_by_simpson_approx.py) * [Interquartile Range](maths/interquartile_range.py) * [Is Int Palindrome](maths/is_int_palindrome.py) * [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py) @@ -644,10 +632,24 @@ * [Modular Exponential](maths/modular_exponential.py) * [Monte Carlo](maths/monte_carlo.py) * [Monte Carlo Dice](maths/monte_carlo_dice.py) - * [Nevilles Method](maths/nevilles_method.py) - * [Newton Raphson](maths/newton_raphson.py) * [Number Of Digits](maths/number_of_digits.py) - * [Numerical Integration](maths/numerical_integration.py) + * Numerical Analysis + * [Bisection](maths/numerical_analysis/bisection.py) + * [Bisection 2](maths/numerical_analysis/bisection_2.py) + * [Integration By Simpson Approx](maths/numerical_analysis/integration_by_simpson_approx.py) + * [Intersection](maths/numerical_analysis/intersection.py) + * [Nevilles Method](maths/numerical_analysis/nevilles_method.py) + * [Newton Forward Interpolation](maths/numerical_analysis/newton_forward_interpolation.py) + * [Newton Method](maths/numerical_analysis/newton_method.py) + * [Newton Raphson](maths/numerical_analysis/newton_raphson.py) + * [Newton Raphson 2](maths/numerical_analysis/newton_raphson_2.py) + * [Newton Raphson New](maths/numerical_analysis/newton_raphson_new.py) + * [Numerical Integration](maths/numerical_analysis/numerical_integration.py) + * [Runge Kutta](maths/numerical_analysis/runge_kutta.py) + * [Runge Kutta Fehlberg 45](maths/numerical_analysis/runge_kutta_fehlberg_45.py) + * [Secant Method](maths/numerical_analysis/secant_method.py) + * [Simpson Rule](maths/numerical_analysis/simpson_rule.py) + * [Square Root](maths/numerical_analysis/square_root.py) * [Odd Sieve](maths/odd_sieve.py) * [Perfect Cube](maths/perfect_cube.py) * [Perfect Number](maths/perfect_number.py) @@ -673,8 +675,6 @@ * [Radians](maths/radians.py) * [Radix2 Fft](maths/radix2_fft.py) * [Remove Digit](maths/remove_digit.py) - * [Runge Kutta](maths/runge_kutta.py) - * [Runge Kutta Fehlberg 45](maths/runge_kutta_fehlberg_45.py) * [Segmented Sieve](maths/segmented_sieve.py) * Series * [Arithmetic](maths/series/arithmetic.py) @@ -687,7 +687,6 @@ * [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py) * [Sigmoid](maths/sigmoid.py) * [Signum](maths/signum.py) - * [Simpson Rule](maths/simpson_rule.py) * [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py) * [Sin](maths/sin.py) * [Sock Merchant](maths/sock_merchant.py) @@ -709,7 +708,6 @@ * [Proth Number](maths/special_numbers/proth_number.py) * [Ugly Numbers](maths/special_numbers/ugly_numbers.py) * [Weird Number](maths/special_numbers/weird_number.py) - * [Square Root](maths/square_root.py) * [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py) * [Sum Of Digits](maths/sum_of_digits.py) * [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py) @@ -812,6 +810,7 @@ * [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py) * [Hubble Parameter](physics/hubble_parameter.py) * [Ideal Gas Law](physics/ideal_gas_law.py) + * [In Static Equilibrium](physics/in_static_equilibrium.py) * [Kinetic Energy](physics/kinetic_energy.py) * [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py) * [Malus Law](physics/malus_law.py) diff --git a/arithmetic_analysis/README.md b/arithmetic_analysis/README.md deleted file mode 100644 index 45cf321e..00000000 --- a/arithmetic_analysis/README.md +++ /dev/null @@ -1,7 +0,0 @@ -# Arithmetic analysis - -Arithmetic analysis is a branch of mathematics that deals with solving linear equations. - -* <https://en.wikipedia.org/wiki/System_of_linear_equations> -* <https://en.wikipedia.org/wiki/Gaussian_elimination> -* <https://en.wikipedia.org/wiki/Root-finding_algorithms> diff --git a/arithmetic_analysis/image_data/__init__.py b/arithmetic_analysis/image_data/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/arithmetic_analysis/gaussian_elimination.py b/linear_algebra/gaussian_elimination.py similarity index 100% rename from arithmetic_analysis/gaussian_elimination.py rename to linear_algebra/gaussian_elimination.py diff --git a/arithmetic_analysis/jacobi_iteration_method.py b/linear_algebra/jacobi_iteration_method.py similarity index 96% rename from arithmetic_analysis/jacobi_iteration_method.py rename to linear_algebra/jacobi_iteration_method.py index 44c52dd4..8c91a19e 100644 --- a/arithmetic_analysis/jacobi_iteration_method.py +++ b/linear_algebra/jacobi_iteration_method.py @@ -1,203 +1,203 @@ -""" -Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method -""" -from __future__ import annotations - -import numpy as np -from numpy import float64 -from numpy.typing import NDArray - - -# Method to find solution of system of linear equations -def jacobi_iteration_method( - coefficient_matrix: NDArray[float64], - constant_matrix: NDArray[float64], - init_val: list[float], - iterations: int, -) -> list[float]: - """ - Jacobi Iteration Method: - An iterative algorithm to determine the solutions of strictly diagonally dominant - system of linear equations - - 4x1 + x2 + x3 = 2 - x1 + 5x2 + 2x3 = -6 - x1 + 2x2 + 4x3 = -4 - - x_init = [0.5, -0.5 , -0.5] - - Examples: - - >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) - >>> constant = np.array([[2], [-6], [-4]]) - >>> init_val = [0.5, -0.5, -0.5] - >>> iterations = 3 - >>> jacobi_iteration_method(coefficient, constant, init_val, iterations) - [0.909375, -1.14375, -0.7484375] - - - >>> coefficient = np.array([[4, 1, 1], [1, 5, 2]]) - >>> constant = np.array([[2], [-6], [-4]]) - >>> init_val = [0.5, -0.5, -0.5] - >>> iterations = 3 - >>> jacobi_iteration_method(coefficient, constant, init_val, iterations) - Traceback (most recent call last): - ... - ValueError: Coefficient matrix dimensions must be nxn but received 2x3 - - >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) - >>> constant = np.array([[2], [-6]]) - >>> init_val = [0.5, -0.5, -0.5] - >>> iterations = 3 - >>> jacobi_iteration_method( - ... coefficient, constant, init_val, iterations - ... ) # doctest: +NORMALIZE_WHITESPACE - Traceback (most recent call last): - ... - ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but - received 3x3 and 2x1 - - >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) - >>> constant = np.array([[2], [-6], [-4]]) - >>> init_val = [0.5, -0.5] - >>> iterations = 3 - >>> jacobi_iteration_method( - ... coefficient, constant, init_val, iterations - ... ) # doctest: +NORMALIZE_WHITESPACE - Traceback (most recent call last): - ... - ValueError: Number of initial values must be equal to number of rows in coefficient - matrix but received 2 and 3 - - >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) - >>> constant = np.array([[2], [-6], [-4]]) - >>> init_val = [0.5, -0.5, -0.5] - >>> iterations = 0 - >>> jacobi_iteration_method(coefficient, constant, init_val, iterations) - Traceback (most recent call last): - ... - ValueError: Iterations must be at least 1 - """ - - rows1, cols1 = coefficient_matrix.shape - rows2, cols2 = constant_matrix.shape - - if rows1 != cols1: - msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}" - raise ValueError(msg) - - if cols2 != 1: - msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}" - raise ValueError(msg) - - if rows1 != rows2: - msg = ( - "Coefficient and constant matrices dimensions must be nxn and nx1 but " - f"received {rows1}x{cols1} and {rows2}x{cols2}" - ) - raise ValueError(msg) - - if len(init_val) != rows1: - msg = ( - "Number of initial values must be equal to number of rows in coefficient " - f"matrix but received {len(init_val)} and {rows1}" - ) - raise ValueError(msg) - - if iterations <= 0: - raise ValueError("Iterations must be at least 1") - - table: NDArray[float64] = np.concatenate( - (coefficient_matrix, constant_matrix), axis=1 - ) - - rows, cols = table.shape - - strictly_diagonally_dominant(table) - - """ - # Iterates the whole matrix for given number of times - for _ in range(iterations): - new_val = [] - for row in range(rows): - temp = 0 - for col in range(cols): - if col == row: - denom = table[row][col] - elif col == cols - 1: - val = table[row][col] - else: - temp += (-1) * table[row][col] * init_val[col] - temp = (temp + val) / denom - new_val.append(temp) - init_val = new_val - """ - - # denominator - a list of values along the diagonal - denominator = np.diag(coefficient_matrix) - - # val_last - values of the last column of the table array - val_last = table[:, -1] - - # masks - boolean mask of all strings without diagonal - # elements array coefficient_matrix - masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool) - - # no_diagonals - coefficient_matrix array values without diagonal elements - no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1) - - # Here we get 'i_col' - these are the column numbers, for each row - # without diagonal elements, except for the last column. - i_row, i_col = np.where(masks) - ind = i_col.reshape(-1, rows - 1) - - #'i_col' is converted to a two-dimensional list 'ind', which will be - # used to make selections from 'init_val' ('arr' array see below). - - # Iterates the whole matrix for given number of times - for _ in range(iterations): - arr = np.take(init_val, ind) - sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1) - new_val = (sum_product_rows + val_last) / denominator - init_val = new_val - - return new_val.tolist() - - -# Checks if the given matrix is strictly diagonally dominant -def strictly_diagonally_dominant(table: NDArray[float64]) -> bool: - """ - >>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]]) - >>> strictly_diagonally_dominant(table) - True - - >>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]]) - >>> strictly_diagonally_dominant(table) - Traceback (most recent call last): - ... - ValueError: Coefficient matrix is not strictly diagonally dominant - """ - - rows, cols = table.shape - - is_diagonally_dominant = True - - for i in range(rows): - total = 0 - for j in range(cols - 1): - if i == j: - continue - else: - total += table[i][j] - - if table[i][i] <= total: - raise ValueError("Coefficient matrix is not strictly diagonally dominant") - - return is_diagonally_dominant - - -# Test Cases -if __name__ == "__main__": - import doctest - - doctest.testmod() +""" +Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method +""" +from __future__ import annotations + +import numpy as np +from numpy import float64 +from numpy.typing import NDArray + + +# Method to find solution of system of linear equations +def jacobi_iteration_method( + coefficient_matrix: NDArray[float64], + constant_matrix: NDArray[float64], + init_val: list[float], + iterations: int, +) -> list[float]: + """ + Jacobi Iteration Method: + An iterative algorithm to determine the solutions of strictly diagonally dominant + system of linear equations + + 4x1 + x2 + x3 = 2 + x1 + 5x2 + 2x3 = -6 + x1 + 2x2 + 4x3 = -4 + + x_init = [0.5, -0.5 , -0.5] + + Examples: + + >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) + >>> constant = np.array([[2], [-6], [-4]]) + >>> init_val = [0.5, -0.5, -0.5] + >>> iterations = 3 + >>> jacobi_iteration_method(coefficient, constant, init_val, iterations) + [0.909375, -1.14375, -0.7484375] + + + >>> coefficient = np.array([[4, 1, 1], [1, 5, 2]]) + >>> constant = np.array([[2], [-6], [-4]]) + >>> init_val = [0.5, -0.5, -0.5] + >>> iterations = 3 + >>> jacobi_iteration_method(coefficient, constant, init_val, iterations) + Traceback (most recent call last): + ... + ValueError: Coefficient matrix dimensions must be nxn but received 2x3 + + >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) + >>> constant = np.array([[2], [-6]]) + >>> init_val = [0.5, -0.5, -0.5] + >>> iterations = 3 + >>> jacobi_iteration_method( + ... coefficient, constant, init_val, iterations + ... ) # doctest: +NORMALIZE_WHITESPACE + Traceback (most recent call last): + ... + ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but + received 3x3 and 2x1 + + >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) + >>> constant = np.array([[2], [-6], [-4]]) + >>> init_val = [0.5, -0.5] + >>> iterations = 3 + >>> jacobi_iteration_method( + ... coefficient, constant, init_val, iterations + ... ) # doctest: +NORMALIZE_WHITESPACE + Traceback (most recent call last): + ... + ValueError: Number of initial values must be equal to number of rows in coefficient + matrix but received 2 and 3 + + >>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]]) + >>> constant = np.array([[2], [-6], [-4]]) + >>> init_val = [0.5, -0.5, -0.5] + >>> iterations = 0 + >>> jacobi_iteration_method(coefficient, constant, init_val, iterations) + Traceback (most recent call last): + ... + ValueError: Iterations must be at least 1 + """ + + rows1, cols1 = coefficient_matrix.shape + rows2, cols2 = constant_matrix.shape + + if rows1 != cols1: + msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}" + raise ValueError(msg) + + if cols2 != 1: + msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}" + raise ValueError(msg) + + if rows1 != rows2: + msg = ( + "Coefficient and constant matrices dimensions must be nxn and nx1 but " + f"received {rows1}x{cols1} and {rows2}x{cols2}" + ) + raise ValueError(msg) + + if len(init_val) != rows1: + msg = ( + "Number of initial values must be equal to number of rows in coefficient " + f"matrix but received {len(init_val)} and {rows1}" + ) + raise ValueError(msg) + + if iterations <= 0: + raise ValueError("Iterations must be at least 1") + + table: NDArray[float64] = np.concatenate( + (coefficient_matrix, constant_matrix), axis=1 + ) + + rows, cols = table.shape + + strictly_diagonally_dominant(table) + + """ + # Iterates the whole matrix for given number of times + for _ in range(iterations): + new_val = [] + for row in range(rows): + temp = 0 + for col in range(cols): + if col == row: + denom = table[row][col] + elif col == cols - 1: + val = table[row][col] + else: + temp += (-1) * table[row][col] * init_val[col] + temp = (temp + val) / denom + new_val.append(temp) + init_val = new_val + """ + + # denominator - a list of values along the diagonal + denominator = np.diag(coefficient_matrix) + + # val_last - values of the last column of the table array + val_last = table[:, -1] + + # masks - boolean mask of all strings without diagonal + # elements array coefficient_matrix + masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool) + + # no_diagonals - coefficient_matrix array values without diagonal elements + no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1) + + # Here we get 'i_col' - these are the column numbers, for each row + # without diagonal elements, except for the last column. + i_row, i_col = np.where(masks) + ind = i_col.reshape(-1, rows - 1) + + #'i_col' is converted to a two-dimensional list 'ind', which will be + # used to make selections from 'init_val' ('arr' array see below). + + # Iterates the whole matrix for given number of times + for _ in range(iterations): + arr = np.take(init_val, ind) + sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1) + new_val = (sum_product_rows + val_last) / denominator + init_val = new_val + + return new_val.tolist() + + +# Checks if the given matrix is strictly diagonally dominant +def strictly_diagonally_dominant(table: NDArray[float64]) -> bool: + """ + >>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]]) + >>> strictly_diagonally_dominant(table) + True + + >>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]]) + >>> strictly_diagonally_dominant(table) + Traceback (most recent call last): + ... + ValueError: Coefficient matrix is not strictly diagonally dominant + """ + + rows, cols = table.shape + + is_diagonally_dominant = True + + for i in range(rows): + total = 0 + for j in range(cols - 1): + if i == j: + continue + else: + total += table[i][j] + + if table[i][i] <= total: + raise ValueError("Coefficient matrix is not strictly diagonally dominant") + + return is_diagonally_dominant + + +# Test Cases +if __name__ == "__main__": + import doctest + + doctest.testmod() diff --git a/arithmetic_analysis/lu_decomposition.py b/linear_algebra/lu_decomposition.py similarity index 100% rename from arithmetic_analysis/lu_decomposition.py rename to linear_algebra/lu_decomposition.py diff --git a/arithmetic_analysis/bisection.py b/maths/numerical_analysis/bisection.py similarity index 100% rename from arithmetic_analysis/bisection.py rename to maths/numerical_analysis/bisection.py diff --git a/maths/bisection.py b/maths/numerical_analysis/bisection_2.py similarity index 100% rename from maths/bisection.py rename to maths/numerical_analysis/bisection_2.py diff --git a/maths/integration_by_simpson_approx.py b/maths/numerical_analysis/integration_by_simpson_approx.py similarity index 100% rename from maths/integration_by_simpson_approx.py rename to maths/numerical_analysis/integration_by_simpson_approx.py diff --git a/arithmetic_analysis/intersection.py b/maths/numerical_analysis/intersection.py similarity index 100% rename from arithmetic_analysis/intersection.py rename to maths/numerical_analysis/intersection.py diff --git a/maths/nevilles_method.py b/maths/numerical_analysis/nevilles_method.py similarity index 100% rename from maths/nevilles_method.py rename to maths/numerical_analysis/nevilles_method.py diff --git a/arithmetic_analysis/newton_forward_interpolation.py b/maths/numerical_analysis/newton_forward_interpolation.py similarity index 100% rename from arithmetic_analysis/newton_forward_interpolation.py rename to maths/numerical_analysis/newton_forward_interpolation.py diff --git a/arithmetic_analysis/newton_method.py b/maths/numerical_analysis/newton_method.py similarity index 100% rename from arithmetic_analysis/newton_method.py rename to maths/numerical_analysis/newton_method.py diff --git a/arithmetic_analysis/newton_raphson.py b/maths/numerical_analysis/newton_raphson.py similarity index 61% rename from arithmetic_analysis/newton_raphson.py rename to maths/numerical_analysis/newton_raphson.py index 1b90ad41..8491ca80 100644 --- a/arithmetic_analysis/newton_raphson.py +++ b/maths/numerical_analysis/newton_raphson.py @@ -5,42 +5,41 @@ from __future__ import annotations from decimal import Decimal -from math import * # noqa: F403 -from sympy import diff +from sympy import diff, lambdify, symbols -def newton_raphson( - func: str, a: float | Decimal, precision: float = 10**-10 -) -> float: +def newton_raphson(func: str, a: float | Decimal, precision: float = 1e-10) -> float: """Finds root from the point 'a' onwards by Newton-Raphson method >>> newton_raphson("sin(x)", 2) 3.1415926536808043 - >>> newton_raphson("x**2 - 5*x +2", 0.4) + >>> newton_raphson("x**2 - 5*x + 2", 0.4) 0.4384471871911695 >>> newton_raphson("x**2 - 5", 0.1) 2.23606797749979 - >>> newton_raphson("log(x)- 1", 2) + >>> newton_raphson("log(x) - 1", 2) 2.718281828458938 """ - x = a + x = symbols("x") + f = lambdify(x, func, "math") + f_derivative = lambdify(x, diff(func), "math") + x_curr = a while True: - x = Decimal(x) - ( - Decimal(eval(func)) / Decimal(eval(str(diff(func)))) # noqa: S307 - ) - # This number dictates the accuracy of the answer - if abs(eval(func)) < precision: # noqa: S307 - return float(x) + x_curr = Decimal(x_curr) - Decimal(f(x_curr)) / Decimal(f_derivative(x_curr)) + if abs(f(x_curr)) < precision: + return float(x_curr) -# Let's Execute if __name__ == "__main__": - # Find root of trigonometric function + import doctest + + doctest.testmod() + # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") - # Find Square Root of 5 + # Find value of e print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") - # Exponential Roots + # Find root of exponential function print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}") diff --git a/maths/newton_raphson.py b/maths/numerical_analysis/newton_raphson_2.py similarity index 100% rename from maths/newton_raphson.py rename to maths/numerical_analysis/newton_raphson_2.py diff --git a/arithmetic_analysis/newton_raphson_new.py b/maths/numerical_analysis/newton_raphson_new.py similarity index 100% rename from arithmetic_analysis/newton_raphson_new.py rename to maths/numerical_analysis/newton_raphson_new.py diff --git a/maths/numerical_integration.py b/maths/numerical_analysis/numerical_integration.py similarity index 100% rename from maths/numerical_integration.py rename to maths/numerical_analysis/numerical_integration.py diff --git a/maths/runge_kutta.py b/maths/numerical_analysis/runge_kutta.py similarity index 100% rename from maths/runge_kutta.py rename to maths/numerical_analysis/runge_kutta.py diff --git a/maths/runge_kutta_fehlberg_45.py b/maths/numerical_analysis/runge_kutta_fehlberg_45.py similarity index 100% rename from maths/runge_kutta_fehlberg_45.py rename to maths/numerical_analysis/runge_kutta_fehlberg_45.py diff --git a/arithmetic_analysis/secant_method.py b/maths/numerical_analysis/secant_method.py similarity index 100% rename from arithmetic_analysis/secant_method.py rename to maths/numerical_analysis/secant_method.py diff --git a/maths/simpson_rule.py b/maths/numerical_analysis/simpson_rule.py similarity index 100% rename from maths/simpson_rule.py rename to maths/numerical_analysis/simpson_rule.py diff --git a/maths/square_root.py b/maths/numerical_analysis/square_root.py similarity index 100% rename from maths/square_root.py rename to maths/numerical_analysis/square_root.py diff --git a/arithmetic_analysis/image_data/2D_problems.jpg b/physics/image_data/2D_problems.jpg similarity index 100% rename from arithmetic_analysis/image_data/2D_problems.jpg rename to physics/image_data/2D_problems.jpg diff --git a/arithmetic_analysis/image_data/2D_problems_1.jpg b/physics/image_data/2D_problems_1.jpg similarity index 100% rename from arithmetic_analysis/image_data/2D_problems_1.jpg rename to physics/image_data/2D_problems_1.jpg diff --git a/arithmetic_analysis/__init__.py b/physics/image_data/__init__.py similarity index 100% rename from arithmetic_analysis/__init__.py rename to physics/image_data/__init__.py diff --git a/arithmetic_analysis/in_static_equilibrium.py b/physics/in_static_equilibrium.py similarity index 96% rename from arithmetic_analysis/in_static_equilibrium.py rename to physics/in_static_equilibrium.py index 7aaecf17..d56299f6 100644 --- a/arithmetic_analysis/in_static_equilibrium.py +++ b/physics/in_static_equilibrium.py @@ -1,94 +1,94 @@ -""" -Checks if a system of forces is in static equilibrium. -""" -from __future__ import annotations - -from numpy import array, cos, cross, float64, radians, sin -from numpy.typing import NDArray - - -def polar_force( - magnitude: float, angle: float, radian_mode: bool = False -) -> list[float]: - """ - Resolves force along rectangular components. - (force, angle) => (force_x, force_y) - >>> import math - >>> force = polar_force(10, 45) - >>> math.isclose(force[0], 7.071067811865477) - True - >>> math.isclose(force[1], 7.0710678118654755) - True - >>> force = polar_force(10, 3.14, radian_mode=True) - >>> math.isclose(force[0], -9.999987317275396) - True - >>> math.isclose(force[1], 0.01592652916486828) - True - """ - if radian_mode: - return [magnitude * cos(angle), magnitude * sin(angle)] - return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))] - - -def in_static_equilibrium( - forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1 -) -> bool: - """ - Check if a system is in equilibrium. - It takes two numpy.array objects. - forces ==> [ - [force1_x, force1_y], - [force2_x, force2_y], - ....] - location ==> [ - [x1, y1], - [x2, y2], - ....] - >>> force = array([[1, 1], [-1, 2]]) - >>> location = array([[1, 0], [10, 0]]) - >>> in_static_equilibrium(force, location) - False - """ - # summation of moments is zero - moments: NDArray[float64] = cross(location, forces) - sum_moments: float = sum(moments) - return abs(sum_moments) < eps - - -if __name__ == "__main__": - # Test to check if it works - forces = array( - [ - polar_force(718.4, 180 - 30), - polar_force(879.54, 45), - polar_force(100, -90), - ] - ) - - location: NDArray[float64] = array([[0, 0], [0, 0], [0, 0]]) - - assert in_static_equilibrium(forces, location) - - # Problem 1 in image_data/2D_problems.jpg - forces = array( - [ - polar_force(30 * 9.81, 15), - polar_force(215, 180 - 45), - polar_force(264, 90 - 30), - ] - ) - - location = array([[0, 0], [0, 0], [0, 0]]) - - assert in_static_equilibrium(forces, location) - - # Problem in image_data/2D_problems_1.jpg - forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) - - location = array([[0, 0], [6, 0], [10, 0], [12, 0]]) - - assert in_static_equilibrium(forces, location) - - import doctest - - doctest.testmod() +""" +Checks if a system of forces is in static equilibrium. +""" +from __future__ import annotations + +from numpy import array, cos, cross, float64, radians, sin +from numpy.typing import NDArray + + +def polar_force( + magnitude: float, angle: float, radian_mode: bool = False +) -> list[float]: + """ + Resolves force along rectangular components. + (force, angle) => (force_x, force_y) + >>> import math + >>> force = polar_force(10, 45) + >>> math.isclose(force[0], 7.071067811865477) + True + >>> math.isclose(force[1], 7.0710678118654755) + True + >>> force = polar_force(10, 3.14, radian_mode=True) + >>> math.isclose(force[0], -9.999987317275396) + True + >>> math.isclose(force[1], 0.01592652916486828) + True + """ + if radian_mode: + return [magnitude * cos(angle), magnitude * sin(angle)] + return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))] + + +def in_static_equilibrium( + forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1 +) -> bool: + """ + Check if a system is in equilibrium. + It takes two numpy.array objects. + forces ==> [ + [force1_x, force1_y], + [force2_x, force2_y], + ....] + location ==> [ + [x1, y1], + [x2, y2], + ....] + >>> force = array([[1, 1], [-1, 2]]) + >>> location = array([[1, 0], [10, 0]]) + >>> in_static_equilibrium(force, location) + False + """ + # summation of moments is zero + moments: NDArray[float64] = cross(location, forces) + sum_moments: float = sum(moments) + return abs(sum_moments) < eps + + +if __name__ == "__main__": + # Test to check if it works + forces = array( + [ + polar_force(718.4, 180 - 30), + polar_force(879.54, 45), + polar_force(100, -90), + ] + ) + + location: NDArray[float64] = array([[0, 0], [0, 0], [0, 0]]) + + assert in_static_equilibrium(forces, location) + + # Problem 1 in image_data/2D_problems.jpg + forces = array( + [ + polar_force(30 * 9.81, 15), + polar_force(215, 180 - 45), + polar_force(264, 90 - 30), + ] + ) + + location = array([[0, 0], [0, 0], [0, 0]]) + + assert in_static_equilibrium(forces, location) + + # Problem in image_data/2D_problems_1.jpg + forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) + + location = array([[0, 0], [6, 0], [10, 0], [12, 0]]) + + assert in_static_equilibrium(forces, location) + + import doctest + + doctest.testmod()