import sys, os.path as osp import typing sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__)))) from include import * class AVLTreeNode: def __init__( self, val=None, height: int = 0, left: typing.Optional["AVLTreeNode"] = None, right: typing.Optional["AVLTreeNode"] = None, ): self.val = val self.height = height self.left = left self.right = right def __str__(self): val = self.val left_val = self.left.val if self.left else None right_val = self.right.val if self.right else None return "".format( val, left_val, right_val ) class AVLTree: def __init__(self, root: typing.Optional[AVLTreeNode] = None): self.root = root @staticmethod def height(node: typing.Optional[AVLTreeNode]) -> int: """ 获取结点高度 Args: node:起始结点 Returns: 高度 or -1 """ # 空结点高度为 -1 ,叶结点高度为 0 if node is not None: return node.height return -1 def __update_height(self, node: AVLTreeNode): """ 更新结点高度 Args: node: 要更新高度的结点 Returns: None """ # 结点高度等于最高子树高度 + 1 node.height = max([self.height(node.left), self.height(node.right)]) + 1 def balance_factor(self, node: AVLTreeNode) -> int: """ 获取结点平衡因子 Args: node: 要获取平衡因子的结点 Returns: 平衡因子 """ # 空结点平衡因子为 0 if node is None: return 0 # 结点平衡因子 = 左子树高度 - 右子树高度 return self.height(node.left) - self.height(node.right) def __right_rotate(self, node: AVLTreeNode) -> AVLTreeNode: child = node.left grand_child = child.right # 以 child 为原点,将 node 向右旋转 child.right = node node.left = grand_child # 更新结点高度 self.__update_height(node) self.__update_height(child) # 返回旋转后子树的根节点 return child def __left_rotate(self, node: AVLTreeNode) -> AVLTreeNode: child = node.right grand_child = child.left # 以 child 为原点,将 node 向左旋转 child.left = node node.right = grand_child # 更新结点高度 self.__update_height(node) self.__update_height(child) # 返回旋转后子树的根节点 return child def rotate(self, node: AVLTreeNode): """ 执行旋转操作,使该子树重新恢复平衡 Args: node: 要旋转的根结点 Returns: 旋转后的根结点 """ # 获取结点 node 的平衡因子 balance_factor = self.balance_factor(node) # 左偏树 if balance_factor > 1: if self.balance_factor(node.left) >= 0: # 右旋 return self.__right_rotate(node) else: # 先左旋后右旋 node.left = self.__left_rotate(node.left) return self.__right_rotate(node) # 右偏树 elif balance_factor < -1: if self.balance_factor(node.right) <= 0: # 左旋 return self.__left_rotate(node) else: # 先右旋后左旋 node.right = self.__right_rotate(node.right) return self.__left_rotate(node) # 平衡树,无需旋转,直接返回 return node def insert(self, val) -> AVLTreeNode: """ 插入结点 Args: val: 结点的值 Returns: node: 插入结点后的根结点 """ self.root = self.insert_helper(self.root, val) return self.root def insert_helper( self, node: typing.Optional[AVLTreeNode], val: int ) -> AVLTreeNode: """ 递归插入结点(辅助函数) Args: node: 要插入的根结点 val: 要插入的结点的值 Returns: 插入结点后的根结点 """ if node is None: return AVLTreeNode(val) # 1. 查找插入位置,并插入结点 if val < node.val: node.left = self.insert_helper(node.left, val) elif val > node.val: node.right = self.insert_helper(node.right, val) else: # 重复结点不插入,直接返回 return node # 更新结点高度 self.__update_height(node) # 2. 执行旋转操作,使该子树重新恢复平衡 return self.rotate(node) def remove(self, val: int): """ 删除结点 Args: val: 要删除的结点的值 Returns: """ root = self.remove_helper(self.root, val) return root def remove_helper( self, node: typing.Optional[AVLTreeNode], val: int ) -> typing.Optional[AVLTreeNode]: """ 递归删除结点(辅助函数) Args: node: 删除的起始结点 val: 要删除的结点的值 Returns: 删除目标结点后的起始结点 """ if node is None: return None # 1. 查找结点,并删除之 if val < node.val: node.left = self.remove_helper(node.left, val) elif val > node.val: node.right = self.remove_helper(node.right, val) else: if node.left is None or node.right is None: child = node.left or node.right # 子结点数量 = 0 ,直接删除 node 并返回 if child is None: return None # 子结点数量 = 1 ,直接删除 node else: node = child else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点 temp = self.min_node(node.right) node.right = self.remove_helper(node.right, temp.val) node.val = temp.val # 更新结点高度 self.__update_height(node) # 2. 执行旋转操作,使该子树重新恢复平衡 return self.rotate(node) def min_node( self, node: typing.Optional[AVLTreeNode] ) -> typing.Optional[AVLTreeNode]: # 获取最小结点 if node is None: return None # 循环访问左子结点,直到叶结点时为最小结点,跳出 while node.left is not None: node = node.left return node def search(self, val: int): cur = self.root while cur is not None: if cur.val < val: cur = cur.right elif cur.val > val: cur = cur.left else: break return cur if __name__ == "__main__": def test_insert(tree: AVLTree, val: int): tree.insert(val) print("\n插入结点 {} 后,AVL 树为".format(val)) print_tree(tree.root) def test_remove(tree: AVLTree, val: int): tree.remove(val) print("\n删除结点 {} 后,AVL 树为".format(val)) print_tree(tree.root) # 初始化空 AVL 树 avl_tree = AVLTree() # 插入结点 # 请关注插入结点后,AVL 树是如何保持平衡的 test_insert(avl_tree, 1) test_insert(avl_tree, 2) test_insert(avl_tree, 3) test_insert(avl_tree, 4) test_insert(avl_tree, 5) test_insert(avl_tree, 8) test_insert(avl_tree, 7) test_insert(avl_tree, 9) test_insert(avl_tree, 10) test_insert(avl_tree, 6) # 插入重复结点 test_insert(avl_tree, 7) # 删除结点 # 请关注删除结点后,AVL 树是如何保持平衡的 test_remove(avl_tree, 8) # 删除度为 0 的结点 test_remove(avl_tree, 5) # 删除度为 1 的结点 test_remove(avl_tree, 4) # 删除度为 2 的结点 result_node = avl_tree.search(7) print("\n查找到的结点对象为 {},结点值 = {}".format(result_node, result_node.val))