feat(algorithms): ✨Add Floyd-Warshall (#97)
This commit is contained in:
parent
3e8540beac
commit
9f8fd33202
@ -113,7 +113,8 @@ a set of rules that precisely define a sequence of operations.
|
||||
* `A` [Hamiltonian Cycle](src/algorithms/graph/hamiltonian-cycle) - Visit every vertex exactly once
|
||||
* `A` [Strongly Connected Components](src/algorithms/graph/strongly-connected-components) - Kosaraju's algorithm
|
||||
* `A` [Travelling Salesman Problem](src/algorithms/graph/travelling-salesman) - shortest possible route that visits each city and returns to the origin city
|
||||
* **Uncategorized**
|
||||
* `A` [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - a single execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices
|
||||
* **Uncategorized**
|
||||
* `B` [Tower of Hanoi](src/algorithms/uncategorized/hanoi-tower)
|
||||
* `B` [Square Matrix Rotation](src/algorithms/uncategorized/square-matrix-rotation) - in-place algorithm
|
||||
* `B` [Jump Game](src/algorithms/uncategorized/jump-game) - backtracking, dynamic programming (top-down + bottom-up) and greedy examples
|
||||
|
@ -69,7 +69,7 @@ _Read this in other languages:_
|
||||
* [归并排序](src/algorithms/sorting/merge-sort)
|
||||
* [快速排序](src/algorithms/sorting/quick-sort)
|
||||
* [希尔排序](src/algorithms/sorting/shell-sort)
|
||||
* **树**
|
||||
* **树**
|
||||
* [深度优先搜索](src/algorithms/tree/depth-first-search) (DFS)
|
||||
* [广度优先搜索](src/algorithms/tree/breadth-first-search) (BFS)
|
||||
* **图**
|
||||
@ -87,7 +87,8 @@ _Read this in other languages:_
|
||||
* [哈密顿图](src/algorithms/graph/hamiltonian-cycle) - 恰好访问每个顶点一次
|
||||
* [强连通分量](src/algorithms/graph/strongly-connected-components) - Kosaraju算法
|
||||
* [旅行推销员问题](src/algorithms/graph/travelling-salesman) - 尽可能以最短的路线访问每个城市并返回原始城市
|
||||
* **未分类**
|
||||
* [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - 一次循环可以找出所有顶点之间的最短路径
|
||||
* **未分类**
|
||||
* [汉诺塔](src/algorithms/uncategorized/hanoi-tower)
|
||||
* [八皇后问题](src/algorithms/uncategorized/n-queens)
|
||||
* [骑士巡逻](src/algorithms/uncategorized/knight-tour)
|
||||
|
@ -68,7 +68,7 @@ _Read this in other languages:_
|
||||
* [合併排序](src/algorithms/sorting/merge-sort)
|
||||
* [快速排序](src/algorithms/sorting/quick-sort)
|
||||
* [希爾排序](src/algorithms/sorting/shell-sort)
|
||||
* **樹**
|
||||
* **樹**
|
||||
* [深度優先搜尋](src/algorithms/tree/depth-first-search) (DFS)
|
||||
* [廣度優先搜尋](src/algorithms/tree/breadth-first-search) (BFS)
|
||||
* **圖**
|
||||
@ -86,7 +86,8 @@ _Read this in other languages:_
|
||||
* [漢彌爾頓環](src/algorithms/graph/hamiltonian-cycle) - Visit every vertex exactly once
|
||||
* [強連通組件](src/algorithms/graph/strongly-connected-components) - Kosaraju's algorithm
|
||||
* [旅行推銷員問題](src/algorithms/graph/travelling-salesman) - shortest possible route that visits each city and returns to the origin city
|
||||
* **未分類**
|
||||
* [Floyd-Warshall algorithm](src/algorithms/graph/floyd-warshall) - 一次循环可以找出所有頂點之间的最短路徑
|
||||
* **未分類**
|
||||
* [河內塔](src/algorithms/uncategorized/hanoi-tower)
|
||||
* [N-皇后問題](src/algorithms/uncategorized/n-queens)
|
||||
* [騎士走棋盤](src/algorithms/uncategorized/knight-tour)
|
||||
|
5
src/algorithms/graph/floyd-warshall/README.md
Normal file
5
src/algorithms/graph/floyd-warshall/README.md
Normal file
@ -0,0 +1,5 @@
|
||||
# Floyd–Warshall algorithm
|
||||
|
||||
## References
|
||||
|
||||
- [Wikipedia](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm)
|
@ -0,0 +1,121 @@
|
||||
import GraphVertex from '../../../../data-structures/graph/GraphVertex';
|
||||
import GraphEdge from '../../../../data-structures/graph/GraphEdge';
|
||||
import Graph from '../../../../data-structures/graph/Graph';
|
||||
import floydWarshall from '../floydWarshall';
|
||||
|
||||
describe('floydWarshall', () => {
|
||||
it('should find minimum paths to all vertices for undirected graph', () => {
|
||||
const vertexA = new GraphVertex('A');
|
||||
const vertexB = new GraphVertex('B');
|
||||
const vertexC = new GraphVertex('C');
|
||||
const vertexD = new GraphVertex('D');
|
||||
const vertexE = new GraphVertex('E');
|
||||
const vertexF = new GraphVertex('F');
|
||||
const vertexG = new GraphVertex('G');
|
||||
const vertexH = new GraphVertex('H');
|
||||
|
||||
const edgeAB = new GraphEdge(vertexA, vertexB, 4);
|
||||
const edgeAE = new GraphEdge(vertexA, vertexE, 7);
|
||||
const edgeAC = new GraphEdge(vertexA, vertexC, 3);
|
||||
const edgeBC = new GraphEdge(vertexB, vertexC, 6);
|
||||
const edgeBD = new GraphEdge(vertexB, vertexD, 5);
|
||||
const edgeEC = new GraphEdge(vertexE, vertexC, 8);
|
||||
const edgeED = new GraphEdge(vertexE, vertexD, 2);
|
||||
const edgeDC = new GraphEdge(vertexD, vertexC, 11);
|
||||
const edgeDG = new GraphEdge(vertexD, vertexG, 10);
|
||||
const edgeDF = new GraphEdge(vertexD, vertexF, 2);
|
||||
const edgeFG = new GraphEdge(vertexF, vertexG, 3);
|
||||
const edgeEG = new GraphEdge(vertexE, vertexG, 5);
|
||||
|
||||
const graph = new Graph();
|
||||
graph
|
||||
.addVertex(vertexH)
|
||||
.addEdge(edgeAB)
|
||||
.addEdge(edgeAE)
|
||||
.addEdge(edgeAC)
|
||||
.addEdge(edgeBC)
|
||||
.addEdge(edgeBD)
|
||||
.addEdge(edgeEC)
|
||||
.addEdge(edgeED)
|
||||
.addEdge(edgeDC)
|
||||
.addEdge(edgeDG)
|
||||
.addEdge(edgeDF)
|
||||
.addEdge(edgeFG)
|
||||
.addEdge(edgeEG);
|
||||
|
||||
const { distances, previousVertices } = floydWarshall(graph);
|
||||
|
||||
const vertices = graph.getAllVertices();
|
||||
const vertexAIndex = vertices.indexOf(vertexA);
|
||||
const vl = vertices.length;
|
||||
|
||||
expect(distances[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity);
|
||||
expect(distances[vertexAIndex][vertexAIndex][vl]).toBe(0);
|
||||
expect(distances[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(4);
|
||||
expect(distances[vertexAIndex][vertices.indexOf(vertexE)][vl]).toBe(7);
|
||||
expect(distances[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(3);
|
||||
expect(distances[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(9);
|
||||
expect(distances[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(12);
|
||||
expect(distances[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(11);
|
||||
|
||||
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexF)][vl]).toBe(vertexD);
|
||||
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexB);
|
||||
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexA);
|
||||
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexG)][vl]).toBe(vertexE);
|
||||
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA);
|
||||
expect(previousVertices[vertexAIndex][vertexAIndex][vl]).toBe(null);
|
||||
expect(previousVertices[vertexAIndex][vertices.indexOf(vertexH)][vl]).toBe(null);
|
||||
});
|
||||
|
||||
it('should find minimum paths to all vertices for directed graph with negative edge weights', () => {
|
||||
const vertexS = new GraphVertex('S');
|
||||
const vertexE = new GraphVertex('E');
|
||||
const vertexA = new GraphVertex('A');
|
||||
const vertexD = new GraphVertex('D');
|
||||
const vertexB = new GraphVertex('B');
|
||||
const vertexC = new GraphVertex('C');
|
||||
const vertexH = new GraphVertex('H');
|
||||
|
||||
const edgeSE = new GraphEdge(vertexS, vertexE, 8);
|
||||
const edgeSA = new GraphEdge(vertexS, vertexA, 10);
|
||||
const edgeED = new GraphEdge(vertexE, vertexD, 1);
|
||||
const edgeDA = new GraphEdge(vertexD, vertexA, -4);
|
||||
const edgeDC = new GraphEdge(vertexD, vertexC, -1);
|
||||
const edgeAC = new GraphEdge(vertexA, vertexC, 2);
|
||||
const edgeCB = new GraphEdge(vertexC, vertexB, -2);
|
||||
const edgeBA = new GraphEdge(vertexB, vertexA, 1);
|
||||
|
||||
const graph = new Graph(true);
|
||||
graph
|
||||
.addVertex(vertexH)
|
||||
.addEdge(edgeSE)
|
||||
.addEdge(edgeSA)
|
||||
.addEdge(edgeED)
|
||||
.addEdge(edgeDA)
|
||||
.addEdge(edgeDC)
|
||||
.addEdge(edgeAC)
|
||||
.addEdge(edgeCB)
|
||||
.addEdge(edgeBA);
|
||||
|
||||
const { distances, previousVertices } = floydWarshall(graph);
|
||||
|
||||
const vertices = graph.getAllVertices();
|
||||
const vertexSIndex = vertices.indexOf(vertexS);
|
||||
const vl = vertices.length;
|
||||
|
||||
expect(distances[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(Infinity);
|
||||
expect(distances[vertexSIndex][vertexSIndex][vl]).toBe(0);
|
||||
expect(distances[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(5);
|
||||
expect(distances[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(5);
|
||||
expect(distances[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(7);
|
||||
expect(distances[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(9);
|
||||
expect(distances[vertexSIndex][vertices.indexOf(vertexE)][vl]).toBe(8);
|
||||
|
||||
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexH)][vl]).toBe(null);
|
||||
expect(previousVertices[vertexSIndex][vertexSIndex][vl]).toBe(null);
|
||||
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexB)][vl]).toBe(vertexC);
|
||||
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexC)][vl]).toBe(vertexA);
|
||||
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexA)][vl]).toBe(vertexD);
|
||||
expect(previousVertices[vertexSIndex][vertices.indexOf(vertexD)][vl]).toBe(vertexE);
|
||||
});
|
||||
});
|
60
src/algorithms/graph/floyd-warshall/floydWarshall.js
Normal file
60
src/algorithms/graph/floyd-warshall/floydWarshall.js
Normal file
@ -0,0 +1,60 @@
|
||||
export default function floydWarshall(graph) {
|
||||
const vertices = graph.getAllVertices();
|
||||
|
||||
// Three dimension matrices.
|
||||
const distances = [];
|
||||
const previousVertices = [];
|
||||
|
||||
// There are k vertices, loop from 0 to k.
|
||||
for (let k = 0; k <= vertices.length; k += 1) {
|
||||
// Path starts from vertex i.
|
||||
vertices.forEach((vertex, i) => {
|
||||
if (k === 0) {
|
||||
distances[i] = [];
|
||||
previousVertices[i] = [];
|
||||
}
|
||||
|
||||
// Path ends to vertex j.
|
||||
vertices.forEach((endVertex, j) => {
|
||||
if (k === 0) {
|
||||
// Initialize distance and previousVertices array
|
||||
distances[i][j] = [];
|
||||
previousVertices[i][j] = [];
|
||||
|
||||
if (vertex === endVertex) {
|
||||
// Distance to self as 0
|
||||
distances[i][j][k] = 0;
|
||||
// Previous vertex to self as null
|
||||
previousVertices[i][j][k] = null;
|
||||
} else {
|
||||
const edge = graph.findEdge(vertex, endVertex);
|
||||
if (edge) {
|
||||
// There is an edge from vertex i to vertex j.
|
||||
// Save distance and previous vertex.
|
||||
distances[i][j][k] = edge.weight;
|
||||
previousVertices[i][j][k] = vertex;
|
||||
} else {
|
||||
distances[i][j][k] = Infinity;
|
||||
previousVertices[i][j][k] = null;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Compare distance from i to j, with distance from i to k - 1 and then from k - 1 to j.
|
||||
// Save the shortest distance and previous vertex
|
||||
// distance[i][j][k] = min( distance[i][k - 1][k - 1], distance[k - 1][j][k - 1] )
|
||||
if (distances[i][j][k - 1] > distances[i][k - 1][k - 1] + distances[k - 1][j][k - 1]) {
|
||||
distances[i][j][k] = distances[i][k - 1][k - 1] + distances[k - 1][j][k - 1];
|
||||
previousVertices[i][j][k] = previousVertices[k - 1][j][k - 1];
|
||||
} else {
|
||||
distances[i][j][k] = distances[i][j][k - 1];
|
||||
previousVertices[i][j][k] = previousVertices[i][j][k - 1];
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// Shortest distance from x to y: distance[x][y][k]
|
||||
// Previous vertex when shortest distance from x to y: previousVertices[x][y][k]
|
||||
return { distances, previousVertices };
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user