2016-01-15 15:03:32 +08:00

153 lines
4.7 KiB
C++

// Source : https://leetcode.com/problems/count-of-smaller-numbers-after-self/
// Author : Calinescu Valentin, Hao Chen
// Date : 2015-12-08
/***************************************************************************************
*
* You are given an integer array nums and you have to return a new counts array. The
* counts array has the property where counts[i] is the number of smaller elements to
* the right of nums[i].
*
* Example:
*
* Given nums = [5, 2, 6, 1]
*
* To the right of 5 there are 2 smaller elements (2 and 1).
* To the right of 2 there is only 1 smaller element (1).
* To the right of 6 there is 1 smaller element (1).
* To the right of 1 there is 0 smaller element.
*
* Return the array [2, 1, 1, 0].
*
***************************************************************************************/
// The following idea is based on a `Binary Index Tree` or 'Fenwick Tree'
// There are two articles explaining this technique quite well:
// 1) http://www.geeksforgeeks.org/binary-indexed-tree-or-fenwick-tree-2/
// 2) http://cs.stackexchange.com/questions/10538/bit-what-is-the-intuition-behind-a-binary-indexed-tree-and-how-was-it-thought-a
#define zeros(i) (i ^ (i - 1)) & i
class Solution {
public:
vector <int> sorted, sol, fenwick;
int n;
int search(int t)
{
int step = 0;
for(; (1 << step) <= n; step++);
int i = 0;
for(int k = step; k >= 0; k--)
if(i + (1 << k) < n && sorted[i + (1 << k)] <= t)
i += (1 << k);
return i;
}
int compute(int t)
{
int s = 0;
for(int i = t; i > 0; i -= zeros(i))
s += fenwick[i];
return s;
}
void add(int t)
{
for(int i = t; i <= n; i += zeros(i))
fenwick[i]++;
}
vector<int> countSmaller(vector<int>& nums) {
if(nums.size())
{
sorted = nums;
n = nums.size();
sort(sorted.begin(), sorted.end());
vector <int> f(sorted.size());
fenwick = f;
for(int i = nums.size() - 1; i >= 0; i--)
{
int pos = search(nums[i]) + 1;
sol.push_back(compute(pos - 1));
add(pos);
}
reverse(sol.begin(), sol.end());
}
return sol;
}
};
/***************************************************************************************
* Another solution - Binary Search Tree
***************************************************************************************/
class BinarySearchTreeNode
{
public:
int val;
int less; // count of members less than val
int count; // count of members equal val
BinarySearchTreeNode *left, *right;
BinarySearchTreeNode(int value) : val(value), less(0),count(1),left(NULL), right(NULL) {}
};
class BinarySearchTree
{
private:
BinarySearchTreeNode* root;
public:
BinarySearchTree(const int value):root(new BinarySearchTreeNode(value)){ }
~BinarySearchTree() {
freeTree(root);
}
void insert(const int value, int &numLessThan) {
insert(root, value, numLessThan);
}
private:
void freeTree(BinarySearchTreeNode* root){
if (root == NULL) return;
if (root->left) freeTree(root->left);
if (root->right) freeTree(root->right);
delete root;
}
void insert(BinarySearchTreeNode* root, const int value, int &numLessThan) {
if(value < root->val) { // left
root->less++;
if(root->left == NULL) {
root->left = new BinarySearchTreeNode(value);
}else{
this->insert(root->left, value, numLessThan);
}
} else if(value > root->val) { // right
numLessThan += root->less + root->count;
if(!root->right) {
root->right = new BinarySearchTreeNode(value);
}else{
this->insert(root->right, value, numLessThan);
}
} else {
numLessThan += root->less;
root->count++;
return;
}
}
};
class Solution {
public:
vector<int> countSmaller(vector<int>& nums) {
vector<int> counts(nums.size());
if(nums.size() == 0) return counts;
BinarySearchTree tree(nums[nums.size()-1]);
for(int i = nums.size() - 2; i >= 0; i--) {
int numLessThan = 0;
tree.insert( nums[i], numLessThan);
counts[i] = numLessThan;
}
return counts;
}
};