63 lines
2.4 KiB
Python
63 lines
2.4 KiB
Python
import torch
|
|
import warnings
|
|
import sys
|
|
import os
|
|
|
|
__package__ = "scripts"
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
from model.LMConfig import LMConfig
|
|
from model.model import MiniMindLM
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning)
|
|
|
|
|
|
def convert_torch2transformers(torch_path, transformers_path):
|
|
def export_tokenizer(transformers_path):
|
|
tokenizer = AutoTokenizer.from_pretrained('../model/minimind_tokenizer')
|
|
tokenizer.save_pretrained(transformers_path)
|
|
|
|
LMConfig.register_for_auto_class()
|
|
MiniMindLM.register_for_auto_class("AutoModelForCausalLM")
|
|
lm_model = MiniMindLM(lm_config)
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
state_dict = torch.load(torch_path, map_location=device)
|
|
lm_model.load_state_dict(state_dict, strict=False)
|
|
model_params = sum(p.numel() for p in lm_model.parameters() if p.requires_grad)
|
|
print(f'模型参数: {model_params / 1e6} 百万 = {model_params / 1e9} B (Billion)')
|
|
lm_model.save_pretrained(transformers_path, safe_serialization=False)
|
|
export_tokenizer(transformers_path)
|
|
print(f"模型已保存为 Transformers 格式: {transformers_path}")
|
|
|
|
|
|
def convert_transformers2torch(transformers_path, torch_path):
|
|
model = AutoModelForCausalLM.from_pretrained(transformers_path, trust_remote_code=True)
|
|
torch.save(model.state_dict(), torch_path)
|
|
print(f"模型已保存为 PyTorch 格式: {torch_path}")
|
|
|
|
|
|
# don't need to use
|
|
def push_to_hf(export_model_path):
|
|
def init_model():
|
|
tokenizer = AutoTokenizer.from_pretrained('../model/minimind_tokenizer')
|
|
model = AutoModelForCausalLM.from_pretrained(export_model_path, trust_remote_code=True)
|
|
return model, tokenizer
|
|
|
|
model, tokenizer = init_model()
|
|
# model.push_to_hub(model_path)
|
|
# tokenizer.push_to_hub(model_path, safe_serialization=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
lm_config = LMConfig(dim=512, n_layers=8, max_seq_len=8192, use_moe=False)
|
|
|
|
torch_path = f"../out/rlhf_{lm_config.dim}{'_moe' if lm_config.use_moe else ''}.pth"
|
|
|
|
transformers_path = '../MiniMind2-Small'
|
|
|
|
# convert torch to transformers model
|
|
convert_torch2transformers(torch_path, transformers_path)
|
|
|
|
# # convert transformers to torch model
|
|
# convert_transformers2torch(transformers_path, torch_path)
|