2025-02-13 12:01:09 +01:00

205 lines
7.0 KiB
Python

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Supervised fine-tuning script for decoder language models.
Usage:
# One 1 node of 8 x H100s
accelerate launch --config_file=recipes/accelerate_configs/zero3.yaml src/open_r1/sft.py \
--model_name_or_path Qwen/Qwen2.5-1.5B-Instruct \
--dataset_name HuggingFaceH4/Bespoke-Stratos-17k \
--learning_rate 2.0e-5 \
--num_train_epochs 1 \
--packing \
--max_seq_length 4096 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--bf16 \
--logging_steps 5 \
--eval_strategy steps \
--eval_steps 100 \
--output_dir data/Qwen2.5-1.5B-Open-R1-Distill
"""
import logging
import os
import sys
import datasets
import torch
import transformers
from datasets import load_dataset
from transformers import AutoTokenizer, set_seed
from transformers.trainer_utils import get_last_checkpoint
from open_r1.configs import SFTConfig
from open_r1.utils.callbacks import get_callbacks
from open_r1.utils.wandb_logging import init_wandb_training
from trl import (
ModelConfig,
ScriptArguments,
SFTTrainer,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
logger = logging.getLogger(__name__)
def main(script_args, training_args, model_args):
# Set seed for reproducibility
set_seed(training_args.seed)
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process a small summary
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Model parameters {model_args}")
logger.info(f"Script parameters {script_args}")
logger.info(f"Training parameters {training_args}")
# Check for last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")
if "wandb" in training_args.report_to:
init_wandb_training(training_args)
################
# Load datasets
################
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
################
# Load tokenizer
################
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True
)
tokenizer.pad_token = tokenizer.eos_token
###################
# Model init kwargs
###################
logger.info("*** Initializing model kwargs ***")
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
training_args.model_init_kwargs = model_kwargs
############################
# Initialize the SFT Trainer
############################
trainer = SFTTrainer(
model=model_args.model_name_or_path,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
callbacks=get_callbacks(training_args, model_args),
)
###############
# Training loop
###############
logger.info("*** Train ***")
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(dataset[script_args.dataset_train_split])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")
# Save everything else on main process
kwargs = {
"dataset_name": script_args.dataset_name,
"tags": ["open-r1"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)
##########
# Evaluate
##########
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = len(dataset[script_args.dataset_test_split])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
#############
# push to hub
#############
if training_args.push_to_hub:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
main(script_args, training_args, model_args)