2024-08-17 18:19:10 -04:00

337 lines
12 KiB
Python

import torch
import torch.nn as nn
import numpy as np
from .spline import *
from .utils import sparse_mask
class KANLayer(nn.Module):
"""
KANLayer class
Attributes:
-----------
in_dim: int
input dimension
out_dim: int
output dimension
num: int
the number of grid intervals
k: int
the piecewise polynomial order of splines
noise_scale: float
spline scale at initialization
coef: 2D torch.tensor
coefficients of B-spline bases
scale_base_mu: float
magnitude of the residual function b(x) is drawn from N(mu, sigma^2), mu = sigma_base_mu
scale_base_sigma: float
magnitude of the residual function b(x) is drawn from N(mu, sigma^2), mu = sigma_base_sigma
scale_sp: float
mangitude of the spline function spline(x)
base_fun: fun
residual function b(x)
mask: 1D torch.float
mask of spline functions. setting some element of the mask to zero means setting the corresponding activation to zero function.
grid_eps: float in [0,1]
a hyperparameter used in update_grid_from_samples. When grid_eps = 1, the grid is uniform; when grid_eps = 0, the grid is partitioned using percentiles of samples. 0 < grid_eps < 1 interpolates between the two extremes.
the id of activation functions that are locked
device: str
device
"""
def __init__(self, in_dim=3, out_dim=2, num=5, k=3, noise_scale=0.5, scale_base_mu=0.0, scale_base_sigma=1.0, scale_sp=1.0, base_fun=torch.nn.SiLU(), grid_eps=0.02, grid_range=[-1, 1], sp_trainable=True, sb_trainable=True, save_plot_data = True, device='cpu', sparse_init=False):
''''
initialize a KANLayer
Args:
-----
in_dim : int
input dimension. Default: 2.
out_dim : int
output dimension. Default: 3.
num : int
the number of grid intervals = G. Default: 5.
k : int
the order of piecewise polynomial. Default: 3.
noise_scale : float
the scale of noise injected at initialization. Default: 0.1.
scale_base_mu : float
the scale of the residual function b(x) is intialized to be N(scale_base_mu, scale_base_sigma^2).
scale_base_sigma : float
the scale of the residual function b(x) is intialized to be N(scale_base_mu, scale_base_sigma^2).
scale_sp : float
the scale of the base function spline(x).
base_fun : function
residual function b(x). Default: torch.nn.SiLU()
grid_eps : float
When grid_eps = 1, the grid is uniform; when grid_eps = 0, the grid is partitioned using percentiles of samples. 0 < grid_eps < 1 interpolates between the two extremes.
grid_range : list/np.array of shape (2,)
setting the range of grids. Default: [-1,1].
sp_trainable : bool
If true, scale_sp is trainable
sb_trainable : bool
If true, scale_base is trainable
device : str
device
sparse_init : bool
if sparse_init = True, sparse initialization is applied.
Returns:
--------
self
Example
-------
>>> from kan.KANLayer import *
>>> model = KANLayer(in_dim=3, out_dim=5)
>>> (model.in_dim, model.out_dim)
'''
super(KANLayer, self).__init__()
# size
self.out_dim = out_dim
self.in_dim = in_dim
self.num = num
self.k = k
grid = torch.linspace(grid_range[0], grid_range[1], steps=num + 1)[None,:].expand(self.in_dim, num+1)
grid = extend_grid(grid, k_extend=k)
self.grid = torch.nn.Parameter(grid).requires_grad_(False)
noises = (torch.rand(self.num+1, self.in_dim, self.out_dim) - 1/2) * noise_scale / num
self.coef = torch.nn.Parameter(curve2coef(self.grid[:,k:-k].permute(1,0), noises, self.grid, k))
if sparse_init:
self.mask = torch.nn.Parameter(sparse_mask(in_dim, out_dim)).requires_grad_(False)
else:
self.mask = torch.nn.Parameter(torch.ones(in_dim, out_dim)).requires_grad_(False)
self.scale_base = torch.nn.Parameter(scale_base_mu * 1 / np.sqrt(in_dim) + \
scale_base_sigma * (torch.rand(in_dim, out_dim)*2-1) * 1/np.sqrt(in_dim)).requires_grad_(sb_trainable)
self.scale_sp = torch.nn.Parameter(torch.ones(in_dim, out_dim) * scale_sp * self.mask).requires_grad_(sp_trainable) # make scale trainable
self.base_fun = base_fun
self.grid_eps = grid_eps
self.to(device)
def to(self, device):
super(KANLayer, self).to(device)
self.device = device
return self
def forward(self, x):
'''
KANLayer forward given input x
Args:
-----
x : 2D torch.float
inputs, shape (number of samples, input dimension)
Returns:
--------
y : 2D torch.float
outputs, shape (number of samples, output dimension)
preacts : 3D torch.float
fan out x into activations, shape (number of sampels, output dimension, input dimension)
postacts : 3D torch.float
the outputs of activation functions with preacts as inputs
postspline : 3D torch.float
the outputs of spline functions with preacts as inputs
Example
-------
>>> from kan.KANLayer import *
>>> model = KANLayer(in_dim=3, out_dim=5)
>>> x = torch.normal(0,1,size=(100,3))
>>> y, preacts, postacts, postspline = model(x)
>>> y.shape, preacts.shape, postacts.shape, postspline.shape
'''
batch = x.shape[0]
preacts = x[:,None,:].clone().expand(batch, self.out_dim, self.in_dim)
base = self.base_fun(x) # (batch, in_dim)
y = coef2curve(x_eval=x, grid=self.grid, coef=self.coef, k=self.k)
postspline = y.clone().permute(0,2,1)
y = self.scale_base[None,:,:] * base[:,:,None] + self.scale_sp[None,:,:] * y
y = self.mask[None,:,:] * y
postacts = y.clone().permute(0,2,1)
y = torch.sum(y, dim=1)
return y, preacts, postacts, postspline
def update_grid_from_samples(self, x, mode='sample'):
'''
update grid from samples
Args:
-----
x : 2D torch.float
inputs, shape (number of samples, input dimension)
Returns:
--------
None
Example
-------
>>> model = KANLayer(in_dim=1, out_dim=1, num=5, k=3)
>>> print(model.grid.data)
>>> x = torch.linspace(-3,3,steps=100)[:,None]
>>> model.update_grid_from_samples(x)
>>> print(model.grid.data)
'''
batch = x.shape[0]
#x = torch.einsum('ij,k->ikj', x, torch.ones(self.out_dim, ).to(self.device)).reshape(batch, self.size).permute(1, 0)
x_pos = torch.sort(x, dim=0)[0]
y_eval = coef2curve(x_pos, self.grid, self.coef, self.k)
num_interval = self.grid.shape[1] - 1 - 2*self.k
def get_grid(num_interval):
ids = [int(batch / num_interval * i) for i in range(num_interval)] + [-1]
grid_adaptive = x_pos[ids, :].permute(1,0)
h = (grid_adaptive[:,[-1]] - grid_adaptive[:,[0]])/num_interval
grid_uniform = grid_adaptive[:,[0]] + h * torch.arange(num_interval+1,)[None, :].to(x.device)
grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
return grid
grid = get_grid(num_interval)
if mode == 'grid':
sample_grid = get_grid(2*num_interval)
x_pos = sample_grid.permute(1,0)
y_eval = coef2curve(x_pos, self.grid, self.coef, self.k)
self.grid.data = extend_grid(grid, k_extend=self.k)
self.coef.data = curve2coef(x_pos, y_eval, self.grid, self.k)
def initialize_grid_from_parent(self, parent, x, mode='sample'):
'''
update grid from a parent KANLayer & samples
Args:
-----
parent : KANLayer
a parent KANLayer (whose grid is usually coarser than the current model)
x : 2D torch.float
inputs, shape (number of samples, input dimension)
Returns:
--------
None
Example
-------
>>> batch = 100
>>> parent_model = KANLayer(in_dim=1, out_dim=1, num=5, k=3)
>>> print(parent_model.grid.data)
>>> model = KANLayer(in_dim=1, out_dim=1, num=10, k=3)
>>> x = torch.normal(0,1,size=(batch, 1))
>>> model.initialize_grid_from_parent(parent_model, x)
>>> print(model.grid.data)
'''
batch = x.shape[0]
x_pos = torch.sort(x, dim=0)[0]
y_eval = coef2curve(x_pos, parent.grid, parent.coef, parent.k)
num_interval = self.grid.shape[1] - 1 - 2*self.k
def get_grid(num_interval):
ids = [int(batch / num_interval * i) for i in range(num_interval)] + [-1]
grid_adaptive = x_pos[ids, :].permute(1,0)
h = (grid_adaptive[:,[-1]] - grid_adaptive[:,[0]])/num_interval
grid_uniform = grid_adaptive[:,[0]] + h * torch.arange(num_interval+1,)[None, :].to(x.device)
grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
return grid
grid = get_grid(num_interval)
if mode == 'grid':
sample_grid = get_grid(2*num_interval)
x_pos = sample_grid.permute(1,0)
y_eval = coef2curve(x_pos, parent.grid, parent.coef, parent.k)
grid = extend_grid(grid, k_extend=self.k)
self.grid.data = grid
self.coef.data = curve2coef(x_pos, y_eval, self.grid, self.k)
def get_subset(self, in_id, out_id):
'''
get a smaller KANLayer from a larger KANLayer (used for pruning)
Args:
-----
in_id : list
id of selected input neurons
out_id : list
id of selected output neurons
Returns:
--------
spb : KANLayer
Example
-------
>>> kanlayer_large = KANLayer(in_dim=10, out_dim=10, num=5, k=3)
>>> kanlayer_small = kanlayer_large.get_subset([0,9],[1,2,3])
>>> kanlayer_small.in_dim, kanlayer_small.out_dim
(2, 3)
'''
spb = KANLayer(len(in_id), len(out_id), self.num, self.k, base_fun=self.base_fun)
spb.grid.data = self.grid[in_id]
spb.coef.data = self.coef[in_id][:,out_id]
spb.scale_base.data = self.scale_base[in_id][:,out_id]
spb.scale_sp.data = self.scale_sp[in_id][:,out_id]
spb.mask.data = self.mask[in_id][:,out_id]
spb.in_dim = len(in_id)
spb.out_dim = len(out_id)
return spb
def swap(self, i1, i2, mode='in'):
'''
swap the i1 neuron with the i2 neuron in input (if mode == 'in') or output (if mode == 'out')
Args:
-----
i1 : int
i2 : int
mode : str
mode = 'in' or 'out'
Returns:
--------
None
Example
-------
>>> from kan.KANLayer import *
>>> model = KANLayer(in_dim=2, out_dim=2, num=5, k=3)
>>> print(model.coef)
>>> model.swap(0,1,mode='in')
>>> print(model.coef)
'''
with torch.no_grad():
def swap_(data, i1, i2, mode='in'):
if mode == 'in':
data[i1], data[i2] = data[i2].clone(), data[i1].clone()
elif mode == 'out':
data[:,i1], data[:,i2] = data[:,i2].clone(), data[:,i1].clone()
if mode == 'in':
swap_(self.grid.data, i1, i2, mode='in')
swap_(self.coef.data, i1, i2, mode=mode)
swap_(self.scale_base.data, i1, i2, mode=mode)
swap_(self.scale_sp.data, i1, i2, mode=mode)
swap_(self.mask.data, i1, i2, mode=mode)