2024-05-01 16:11:17 +02:00

365 lines
15 KiB
Python

import torch
import torch.nn as nn
import numpy as np
from .spline import *
class KANLayer(nn.Module):
"""
KANLayer class
Attributes:
-----------
in_dim: int
input dimension
out_dim: int
output dimension
size: int
the number of splines = input dimension * output dimension
k: int
the piecewise polynomial order of splines
grid: 2D torch.float
grid points
noises: 2D torch.float
injected noises to splines at initialization (to break degeneracy)
coef: 2D torch.tensor
coefficients of B-spline bases
scale_base: 1D torch.float
magnitude of the residual function b(x)
scale_sp: 1D torch.float
mangitude of the spline function spline(x)
base_fun: fun
residual function b(x)
mask: 1D torch.float
mask of spline functions. setting some element of the mask to zero means setting the corresponding activation to zero function.
grid_eps: float in [0,1]
a hyperparameter used in update_grid_from_samples. When grid_eps = 0, the grid is uniform; when grid_eps = 1, the grid is partitioned using percentiles of samples. 0 < grid_eps < 1 interpolates between the two extremes.
weight_sharing: 1D tensor int
allow spline activations to share parameters
lock_counter: int
counter how many activation functions are locked (weight sharing)
lock_id: 1D torch.int
the id of activation functions that are locked
device: str
device
Methods:
--------
__init__():
initialize a KANLayer
forward():
forward
update_grid_from_samples():
update grids based on samples' incoming activations
initialize_grid_from_parent():
initialize grids from another model
get_subset():
get subset of the KANLayer (used for pruning)
lock():
lock several activation functions to share parameters
unlock():
unlock already locked activation functions
"""
def __init__(self, in_dim=3, out_dim=2, num=5, k=3, noise_scale=0.1, scale_base=1.0, scale_sp=1.0, base_fun=torch.nn.SiLU(), grid_eps=0.02, grid_range=[-1, 1], sp_trainable=True, sb_trainable=True, device='cpu'):
''''
initialize a KANLayer
Args:
-----
in_dim : int
input dimension. Default: 2.
out_dim : int
output dimension. Default: 3.
num : int
the number of grid intervals = G. Default: 5.
k : int
the order of piecewise polynomial. Default: 3.
noise_scale : float
the scale of noise injected at initialization. Default: 0.1.
scale_base : float
the scale of the residual function b(x). Default: 1.0.
scale_sp : float
the scale of the base function spline(x). Default: 1.0.
base_fun : function
residual function b(x). Default: torch.nn.SiLU()
grid_eps : float
When grid_eps = 0, the grid is uniform; when grid_eps = 1, the grid is partitioned using percentiles of samples. 0 < grid_eps < 1 interpolates between the two extremes. Default: 0.02.
grid_range : list/np.array of shape (2,)
setting the range of grids. Default: [-1,1].
sp_trainable : bool
If true, scale_sp is trainable. Default: True.
sb_trainable : bool
If true, scale_base is trainable. Default: True.
device : str
device
Returns:
--------
self
Example
-------
>>> model = KANLayer(in_dim=3, out_dim=5)
>>> (model.in_dim, model.out_dim)
(3, 5)
'''
super(KANLayer, self).__init__()
# size
self.size = size = out_dim * in_dim
self.out_dim = out_dim
self.in_dim = in_dim
self.num = num
self.k = k
# shape: (size, num)
self.grid = torch.einsum('i,j->ij', torch.ones(size, ), torch.linspace(grid_range[0], grid_range[1], steps=num + 1))
self.grid = torch.nn.Parameter(self.grid).requires_grad_(False)
noises = (torch.rand(size, self.grid.shape[1]) - 1 / 2) * noise_scale / num
noises = noises.to(device)
# shape: (size, coef)
self.coef = torch.nn.Parameter(curve2coef(self.grid, noises, self.grid, k))
if isinstance(scale_base, float):
self.scale_base = torch.nn.Parameter(torch.ones(size, ) * scale_base).requires_grad_(sb_trainable) # make scale trainable
else:
self.scale_base = torch.nn.Parameter(scale_base).requires_grad_(sb_trainable)
self.scale_sp = torch.nn.Parameter(torch.ones(size, ) * scale_sp).requires_grad_(sp_trainable) # make scale trainable
self.base_fun = base_fun
self.mask = torch.nn.Parameter(torch.ones(size, )).requires_grad_(False)
self.grid_eps = grid_eps
self.weight_sharing = torch.arange(size)
self.lock_counter = 0
self.lock_id = torch.zeros(size)
self.device = device
def forward(self, x):
'''
KANLayer forward given input x
Args:
-----
x : 2D torch.float
inputs, shape (number of samples, input dimension)
Returns:
--------
y : 2D torch.float
outputs, shape (number of samples, output dimension)
preacts : 3D torch.float
fan out x into activations, shape (number of sampels, output dimension, input dimension)
postacts : 3D torch.float
the outputs of activation functions with preacts as inputs
postspline : 3D torch.float
the outputs of spline functions with preacts as inputs
Example
-------
>>> model = KANLayer(in_dim=3, out_dim=5)
>>> x = torch.normal(0,1,size=(100,3))
>>> y, preacts, postacts, postspline = model(x)
>>> y.shape, preacts.shape, postacts.shape, postspline.shape
(torch.Size([100, 5]),
torch.Size([100, 5, 3]),
torch.Size([100, 5, 3]),
torch.Size([100, 5, 3]))
'''
batch = x.shape[0]
# x: shape (batch, in_dim) => shape (size, batch) (size = out_dim * in_dim)
x = torch.einsum('ij,k->ikj', x, torch.ones(self.out_dim, ).to(self.device)).reshape(batch, self.size).permute(1, 0)
preacts = x.permute(1, 0).clone().reshape(batch, self.out_dim, self.in_dim)
base = self.base_fun(x).permute(1, 0) # shape (batch, size)
y = coef2curve(x_eval=x, grid=self.grid[self.weight_sharing], coef=self.coef[self.weight_sharing], k=self.k, device=self.device) # shape (size, batch)
y = y.permute(1, 0) # shape (batch, size)
postspline = y.clone().reshape(batch, self.out_dim, self.in_dim)
y = self.scale_base.unsqueeze(dim=0) * base + self.scale_sp.unsqueeze(dim=0) * y
y = self.mask[None, :] * y
postacts = y.clone().reshape(batch, self.out_dim, self.in_dim)
y = torch.sum(y.reshape(batch, self.out_dim, self.in_dim), dim=2) # shape (batch, out_dim)
# y shape: (batch, out_dim); preacts shape: (batch, in_dim, out_dim)
# postspline shape: (batch, in_dim, out_dim); postacts: (batch, in_dim, out_dim)
# postspline is for extension; postacts is for visualization
return y, preacts, postacts, postspline
def update_grid_from_samples(self, x):
'''
update grid from samples
Args:
-----
x : 2D torch.float
inputs, shape (number of samples, input dimension)
Returns:
--------
None
Example
-------
>>> model = KANLayer(in_dim=1, out_dim=1, num=5, k=3)
>>> print(model.grid.data)
>>> x = torch.linspace(-3,3,steps=100)[:,None]
>>> model.update_grid_from_samples(x)
>>> print(model.grid.data)
tensor([[-1.0000, -0.6000, -0.2000, 0.2000, 0.6000, 1.0000]])
tensor([[-3.0002, -1.7882, -0.5763, 0.6357, 1.8476, 3.0002]])
'''
batch = x.shape[0]
x = torch.einsum('ij,k->ikj', x, torch.ones(self.out_dim, ).to(self.device)).reshape(batch, self.size).permute(1, 0)
x_pos = torch.sort(x, dim=1)[0]
y_eval = coef2curve(x_pos, self.grid, self.coef, self.k)
num_interval = self.grid.shape[1] - 1
ids = [int(batch / num_interval * i) for i in range(num_interval)] + [-1]
grid_adaptive = x_pos[:, ids]
margin = 0.01
grid_uniform = torch.cat([grid_adaptive[:, [0]] - margin + (grid_adaptive[:, [-1]] - grid_adaptive[:, [0]] + 2 * margin) * a for a in np.linspace(0, 1, num=self.grid.shape[1])], dim=1)
self.grid.data = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
self.coef.data = curve2coef(x_pos, y_eval, self.grid, self.k)
def initialize_grid_from_parent(self, parent, x):
'''
update grid from a parent KANLayer & samples
Args:
-----
parent : KANLayer
a parent KANLayer (whose grid is usually coarser than the current model)
x : 2D torch.float
inputs, shape (number of samples, input dimension)
Returns:
--------
None
Example
-------
>>> batch = 100
>>> parent_model = KANLayer(in_dim=1, out_dim=1, num=5, k=3)
>>> print(parent_model.grid.data)
>>> model = KANLayer(in_dim=1, out_dim=1, num=10, k=3)
>>> x = torch.normal(0,1,size=(batch, 1))
>>> model.initialize_grid_from_parent(parent_model, x)
>>> print(model.grid.data)
tensor([[-1.0000, -0.6000, -0.2000, 0.2000, 0.6000, 1.0000]])
tensor([[-1.0000, -0.8000, -0.6000, -0.4000, -0.2000, 0.0000, 0.2000, 0.4000,
0.6000, 0.8000, 1.0000]])
'''
batch = x.shape[0]
# preacts: shape (batch, in_dim) => shape (size, batch) (size = out_dim * in_dim)
x_eval = torch.einsum('ij,k->ikj', x, torch.ones(self.out_dim, ).to(self.device)).reshape(batch, self.size).permute(1, 0)
x_pos = parent.grid
sp2 = KANLayer(in_dim=1, out_dim=self.size, k=1, num=x_pos.shape[1] - 1, scale_base=0.).to(self.device)
sp2.coef.data = curve2coef(sp2.grid, x_pos, sp2.grid, k=1)
y_eval = coef2curve(x_eval, parent.grid, parent.coef, parent.k)
percentile = torch.linspace(-1, 1, self.num + 1).to(self.device)
self.grid.data = sp2(percentile.unsqueeze(dim=1))[0].permute(1, 0)
self.coef.data = curve2coef(x_eval, y_eval, self.grid, self.k)
def get_subset(self, in_id, out_id):
'''
get a smaller KANLayer from a larger KANLayer (used for pruning)
Args:
-----
in_id : list
id of selected input neurons
out_id : list
id of selected output neurons
Returns:
--------
spb : KANLayer
Example
-------
>>> kanlayer_large = KANLayer(in_dim=10, out_dim=10, num=5, k=3)
>>> kanlayer_small = kanlayer_large.get_subset([0,9],[1,2,3])
>>> kanlayer_small.in_dim, kanlayer_small.out_dim
(2, 3)
'''
spb = KANLayer(len(in_id), len(out_id), self.num, self.k, base_fun=self.base_fun)
spb.grid.data = self.grid.reshape(self.out_dim, self.in_dim, spb.num + 1)[out_id][:, in_id].reshape(-1, spb.num + 1)
spb.coef.data = self.coef.reshape(self.out_dim, self.in_dim, spb.coef.shape[1])[out_id][:, in_id].reshape(-1, spb.coef.shape[1])
spb.scale_base.data = self.scale_base.reshape(self.out_dim, self.in_dim)[out_id][:, in_id].reshape(-1, )
spb.scale_sp.data = self.scale_sp.reshape(self.out_dim, self.in_dim)[out_id][:, in_id].reshape(-1, )
spb.mask.data = self.mask.reshape(self.out_dim, self.in_dim)[out_id][:, in_id].reshape(-1, )
spb.in_dim = len(in_id)
spb.out_dim = len(out_id)
spb.size = spb.in_dim * spb.out_dim
return spb
def lock(self, ids):
'''
lock activation functions to share parameters based on ids
Args:
-----
ids : list
list of ids of activation functions
Returns:
--------
None
Example
-------
>>> model = KANLayer(in_dim=3, out_dim=3, num=5, k=3)
>>> print(model.weight_sharing.reshape(3,3))
>>> model.lock([[0,0],[1,2],[2,1]]) # set (0,0),(1,2),(2,1) functions to be the same
>>> print(model.weight_sharing.reshape(3,3))
tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
tensor([[0, 1, 2],
[3, 4, 0],
[6, 0, 8]])
'''
self.lock_counter += 1
# ids: [[i1,j1],[i2,j2],[i3,j3],...]
for i in range(len(ids)):
if i != 0:
self.weight_sharing[ids[i][1] * self.in_dim + ids[i][0]] = ids[0][1] * self.in_dim + ids[0][0]
self.lock_id[ids[i][1] * self.in_dim + ids[i][0]] = self.lock_counter
def unlock(self, ids):
'''
unlock activation functions
Args:
-----
ids : list
list of ids of activation functions
Returns:
--------
None
Example
-------
>>> model = KANLayer(in_dim=3, out_dim=3, num=5, k=3)
>>> model.lock([[0,0],[1,2],[2,1]]) # set (0,0),(1,2),(2,1) functions to be the same
>>> print(model.weight_sharing.reshape(3,3))
>>> model.unlock([[0,0],[1,2],[2,1]]) # unlock the locked functions
>>> print(model.weight_sharing.reshape(3,3))
tensor([[0, 1, 2],
[3, 4, 0],
[6, 0, 8]])
tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
'''
# check ids are locked
num = len(ids)
locked = True
for i in range(num):
locked *= (self.weight_sharing[ids[i][1] * self.in_dim + ids[i][0]] == self.weight_sharing[ids[0][1] * self.in_dim + ids[0][0]])
if locked == False:
print("they are not locked. unlock failed.")
return 0
for i in range(len(ids)):
self.weight_sharing[ids[i][1] * self.in_dim + ids[i][0]] = ids[i][1] * self.in_dim + ids[i][0]
self.lock_id[ids[i][1] * self.in_dim + ids[i][0]] = 0
self.lock_counter -= 1