This commit is contained in:
guanjihuan 2024-01-27 03:45:36 +08:00
commit 3b0654daad
23 changed files with 3619 additions and 0 deletions

140
README.md Normal file
View File

@ -0,0 +1,140 @@
## chat.guanjihuan.com
这里把 https://chat.guanjihuan.com 的主要实现代码进行开源,主要参考开源大模型的 GitHub 或 HuggingFace 主页、第三方模型的 API 官网,以及 HuggingFace 和 Pytorch 的文档等。
此外,还有很多开源大模型,这里只测试了几个,感兴趣的可以自行测试,通常 16G 显存的显卡可以完整加载 7B 左右的模型70亿参数以及量化地加载 14B 左右的模型14亿参数更大参数空间的模型的运行需要更大显存的显卡。
运行代码需要安装 Python 环境,可以选择安装 Anacondahttps://www.anaconda.com 。如果是本地 GPU 运行模型,还需要 Nvidia 显卡。特别说明:本篇提供了在本地 CPU 加载 ChatGLM 模型的代码,没有独立显卡的可以考虑这个,只是对话速度会比较慢。
Web 框架是使用 Streamlithttps://streamlit.io、https://github.com/streamlit/streamlit 。
Streamlit 的安装:
```
pip install streamlit
```
运行命令:
```
streamlit run web_demo.py
```
```
python -m streamlit run web_demo.py
```
如果是在公网IP下访问并指定8501端口和黑色主题那么运行命令为
```
streamlit run web_demo.py --theme.base dark --server.port 8501 --server.address 0.0.0.0
```
为了防止一些不必要的报错,可以更新一下操作系统的显卡驱动并重启:
```
sudo apt-get update
sudo apt-get install ubuntu-drivers-common
sudo ubuntu-drivers autoinstall
```
此外,可以更新一下 Pytorchhttps://pytorch.org/get-started/locally/),也可以防止一些报错:
```
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
```
### 一、本地运行开源模型
#### 1. 开源模型 ChatGLM
ChatGLM3-6B 主页https://github.com/THUDM/ChatGLM3 。 安装该模型依赖的环境:
```
pip install -r requirements.txt
```
模型文件下载https://huggingface.co/THUDM/chatglm3-6b-32k
显存/内存要求:量化加载大概要 6G 显存;默认加载大概需要 13G 显存CPU加载大概需要 25G 内存。
运行:
```
python -m streamlit run ./ChatGLM3.py --theme.base dark --server.port 8501
```
如果量化加载时 bitsandbytes 报错那么安装该软件包pip install bitsandbytes
#### 2. 开源模型 Qwen
Qwen 主页https://github.com/QwenLM/Qwen 。 安装该模型依赖的环境:
```
pip install -r requirements.txt
```
Qwen-7B-Chat-Int4 模型文件下载https://huggingface.co/Qwen/Qwen-7B-Chat-Int4
Qwen-14B-Chat-Int4 模型文件下载https://huggingface.co/Qwen/Qwen-14B-Chat-Int4
显存要求Qwen-7B-Chat-Int4 大概需要 8G 显存Qwen-14B-Chat-Int4 大概需要 12G 显存。
运行:
```
python -m streamlit run ./Qwen.py --theme.base dark --server.port 8501
```
此外,如果运行有报错,可能还需要安装:
```
pip install optimum
pip install auto-gptq
pip install --upgrade s3fs aiobotocore botocore
```
#### 3. 开源模型 InternLM
InternLM 主页https://github.com/InternLM/InternLM 。运行代码时,需要调用其中的 tools 文件夹。
internlm-chat-7b 模型文件下载https://huggingface.co/internlm/internlm-chat-7b
internlm2-chat-7b 模型文件下载https://huggingface.co/internlm/internlm2-chat-7b
目前提供的代码是加载 internlm-chat-7b 模型,加载 internlm2-chat-7b 模型的未测试。
显存要求:大概需要 7B 的显存。
运行:
```
python -m streamlit run ./InternLM.py --theme.base dark --server.port 8501
```
### 二、使用第三方模型 API
#### 1. 智谱 - ChatGLM_Turbo
智谱 - ChatGLM Turbo 的 API key 获取收费可免费试用https://maas.aminer.cn
运行:
```
python -m streamlit run ./ChatGLM_Turbo.py --theme.base dark --server.port 8501
```
#### 2. 讯飞 - 星火大模型
讯飞 - 星火大模型的 API key 获取收费可免费试用https://xinghuo.xfyun.cn
运行:
```
python -m streamlit run ./星火大模型.py --theme.base dark --server.port 8501
```

View File

@ -0,0 +1,105 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
"""
import streamlit as st
st.set_page_config(
page_title="Chat",
layout='wide'
)
choose_load_method = 1 # 选择加载模型的方式
if choose_load_method == 0:
# 默认加载需要13G显存
@st.cache_resource
def load_model_chatglm3():
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k",trust_remote_code=True).half().cuda()
model = model.eval()
return model, tokenizer
model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
elif choose_load_method == 1:
# 量化加载需要6G显存
@st.cache_resource
def load_model_chatglm3():
from transformers import AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
)
model = AutoModelForCausalLM.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True, quantization_config=nf4_config)
model = model.eval()
return model, tokenizer
model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
elif choose_load_method == 2:
# 在CPU上加载需要25G内存对话速度会比较慢
@st.cache_resource
def load_model_chatglm3():
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k",trust_remote_code=True).float()
model = model.eval()
return model, tokenizer
model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
with st.sidebar:
with st.expander('参数', expanded=True):
max_length = 409600
top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session')
def reset_parameter():
st.session_state['top_p_session'] = 0.8
st.session_state['temperature_session'] = 0.8
reset_parameter_button = st.button('重置参数', on_click=reset_parameter)
prompt = st.chat_input("在这里输入您的命令")
def chat_response_chatglm3(prompt):
history, past_key_values = st.session_state.history_ChatGLM3, st.session_state.past_key_values_ChatGLM3
for response, history, past_key_values in model_chatglm3.stream_chat(tokenizer_chatglm3, prompt, history,
past_key_values=past_key_values,
max_length=max_length, top_p=top_p,
temperature=temperature,
return_past_key_values=True):
message_placeholder_chatglm3.markdown(response)
if stop_button:
break
st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
st.session_state.history_ChatGLM3 = history
st.session_state.past_key_values_ChatGLM3 = past_key_values
return response
def clear_all():
st.session_state.history_ChatGLM3 = []
st.session_state.past_key_values_ChatGLM3 = None
st.session_state.ai_response = []
if 'history_ChatGLM3' not in st.session_state:
st.session_state.history_ChatGLM3 = []
if 'past_key_values_ChatGLM3' not in st.session_state:
st.session_state.past_key_values_ChatGLM3 = None
if 'ai_response' not in st.session_state:
st.session_state.ai_response = []
for ai_response in st.session_state.ai_response:
with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
st.markdown(ai_response["content"])
prompt_placeholder = st.chat_message("user", avatar='user')
with st.chat_message("robot", avatar="assistant"):
message_placeholder_chatglm3 = st.empty()
if prompt:
prompt_placeholder.markdown(prompt)
st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
stop = st.empty()
stop_button = stop.button('停止', key='break_response')
chat_response_chatglm3(prompt)
stop.empty()
button_clear = st.button("清空", on_click=clear_all, key='clear')

View File

@ -0,0 +1,33 @@
# basic requirements
protobuf>=4.25.2
transformers>=4.36.2
tokenizers>=0.15.0
cpm_kernels>=1.0.11
torch>=2.1.0
gradio>=4.14.0
sentencepiece>=0.1.99
sentence_transformers>=2.2.2
accelerate>=0.26.1
streamlit>=1.30.0
fastapi>=0.109.0
loguru~=0.7.2
mdtex2html>=1.2.0
latex2mathml>=3.77.0
# for openai demo
openai>=1.7.2
zhipuai>=2.0.0
pydantic>=2.5.3
sse-starlette>=1.8.2
uvicorn>=0.25.0
timm>=0.9.12
tiktoken>=0.5.2
# for langchain demo
langchain>=0.1.0
langchainhub>=0.1.14
arxiv>=2.1.0

View File

@ -0,0 +1,112 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
"""
import streamlit as st
st.set_page_config(
page_title="Chat",
layout='wide'
)
@st.cache_resource
def load_model_internlm_7B():
# internlm大概需要 7B 显存)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
)
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, quantization_config=nf4_config)
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.eval()
return model, tokenizer
model_internlm_7B, tokenizer_internlm_7B = load_model_internlm_7B()
with st.sidebar:
with st.expander('参数', expanded=True):
max_length = 409600
top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session')
def reset_parameter():
st.session_state['top_p_session'] = 0.8
st.session_state['temperature_session'] = 0.8
reset_parameter_button = st.button('重置参数', on_click=reset_parameter)
prompt = st.chat_input("在这里输入您的命令")
from tools.transformers.interface import GenerationConfig, generate_interactive
def prepare_generation_config():
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
return generation_config
def combine_history(prompt, messages):
total_prompt = ""
for message in messages:
cur_content = message["content"]
if message["role"] == "user":
cur_prompt = user_prompt.replace("{user}", cur_content)
elif message["role"] == "robot":
cur_prompt = robot_prompt.replace("{robot}", cur_content)
else:
raise RuntimeError
total_prompt += cur_prompt
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt)
return total_prompt
user_prompt = "<|User|>:{user}<eoh>\n"
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:"
generation_config = prepare_generation_config()
if "messages_internlm_7B" not in st.session_state:
st.session_state.messages_internlm_7B = []
from dataclasses import asdict
def chat_response_internlm_7B(prompt):
real_prompt = combine_history(prompt, messages = st.session_state.messages_internlm_7B)
st.session_state.messages_internlm_7B.append({"role": "user", "content": prompt, "avatar": 'user'})
for cur_response in generate_interactive(
model=model_internlm_7B,
tokenizer=tokenizer_internlm_7B,
prompt=real_prompt,
additional_eos_token_id=103028,
**asdict(generation_config),
):
message_placeholder_internlm_7B.markdown(cur_response + "")
if stop_button:
break
message_placeholder_internlm_7B.markdown(cur_response)
st.session_state.messages_internlm_7B.append({"role": "robot", "content": cur_response, "avatar": "assistant"})
st.session_state.ai_response.append({"role": "robot", "content": cur_response, "avatar": "assistant"})
return cur_response
def clear_all():
st.session_state.messages_internlm_7B = []
st.session_state.ai_response = []
if 'messages_internlm_7B' not in st.session_state:
st.session_state.messages_internlm_7B = []
if 'ai_response' not in st.session_state:
st.session_state.ai_response = []
for ai_response in st.session_state.ai_response:
with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
st.markdown(ai_response["content"])
prompt_placeholder = st.chat_message("user", avatar='user')
with st.chat_message("robot", avatar="assistant"):
message_placeholder_internlm_7B = st.empty()
if prompt:
prompt_placeholder.markdown(prompt)
st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
stop = st.empty()
stop_button = stop.button('停止', key='break_response')
chat_response_internlm_7B(prompt)
stop.empty()
button_clear = st.button("清空", on_click=clear_all, key='clear')

View File

@ -0,0 +1,111 @@
本目录提供辅助模型训练的一些工具,文件结构如下所示:
```bash
├── transformers # 适配hugging face的transformers的一些工具
│ ├── configuration_internlm.py # config适配工具
│ ├── modeling_internlm.py # model适配工具
│ ├── tokenization_internlm.py # tokenizer适配工具
│ └── convert2hf.py # 模型适配hugging face工具
└── tokenizer.py # 将原始数据转换成bin和meta文件的工具
```
# tokenizer.py
生成原始数据的`bin``meta`文件需要使用`tokenizer`,我们通过在`tools/tokenizer.py`中指定模型参数路径的方式来导入tokenizer模型。目前我们提供了`V7_sft.model`来生成tokens。若想使用不同的模型可直接修改`tokernizer.py`中的模型参数路径。
可以运行以下命令生成原始数据对应的`bin``meta`文件,其中参数`text_input_path`表示原始文本数据路径,目前支持`txt``json``jsonl`三种输入格式,`bin_output_path`表示生成的`bin`文件的保存路径。
```bash
$ python tools/tokenizer.py --text_input_path your_input_text_path --bin_output_path your_output_bin_path
```
下面是一个数据处理的例子:
给定一个包含原始数据集的文件`raw_data.txt`,原始数据集如下所示:
```bash
感恩生活中的每一个细节,才能真正体会到幸福的滋味。
梦想是人生的动力源泉,努力追逐,才能实现自己的目标。
学会宽容和理解,才能建立真正和谐的人际关系。
```
可以通过运行以下命令来生成`bin``meta`文件:
```bash
$ python tools/tokenizer.py --text_input_path raw_data.txt --bin_output_path cn/output.bin
```
需要注意的是,生成的`bin`文件需要保存在`cn`或者`en`或者`code`或者`ja`或者`ar`或者`kaoshi`这五个目录下,以区分数据集的类型。
其中,`cn`表示中文数据集;`en`表示英文数据集;`code`表示代码数据集;`ja`表示日语数据集;`ar`表示阿拉伯语数据集;`kaoshi`表示考试数据集。
生成的bin文件的格式如下
```python
{"tokens": [73075, 75302, 69522, 69022, 98899, 67713, 68015, 81269, 74637, 75445, 99157]}
{"tokens": [69469, 60355, 73026, 68524, 60846, 61844, 98899, 67775, 79241, 98899, 67713, 67800, 67453, 67838, 99157]}
{"tokens": [68057, 79017, 60378, 68014, 98899, 67713, 67990, 68015, 70381, 67428, 61003, 67622, 99157]}
```
`bin`文件中的每一行均对应原始数据集中的每一个句子,表示每个句子的`token`下文将用sequence指定
生成的`meta`文件的格式如下:
```bash
(0, 11), (90, 15), (208, 13)
```
`meta`文件中,每个元组对应着`bin`文件中每一个`sequence`的元信息。其中,元组的第一个元素表示每个`sequence`在所有`sequence`中的`starting index`,第二个元素表示每个`sequence`中有多少个`tokens`
例如,对于第一个`sequence``starting index`为 0有 11 个`tokens`;对于第二个`sequence`,由于第一个`sequence`转换为`string`后的长度为`89`,因此它的`starting index`为 90有 15 个`tokens`
`json``jsonl`类型的文件的`bin``meta`文件格式和`txt`一致,此处不再赘叙。
# pal_inference.py
在 [GSM8K](https://huggingface.co/datasets/gsm8k) 数据集上使用 [PAL](https://github.com/reasoning-machines/pal) 范式推理,使模型编写代码并通过 Python 解释器执行来解决数学问题。其用法如下:
```python
# 用法:
python pal_inference.py <model> <out_dir> [--dataset <dataset>] [--max_length <length>] [--top_p <threshold>] [--eoh <end token>] [--eoa <end token>] [--eos <end token>] [--temperature <temp>] [--time_out <time>] [--verbose, -v] [--append, -a]
# 参数:
# <model> 用于推理的模型的路径。
# <out_dir> 生成代码将保存在指定的输出文件夹中。
# 可选参数:
# --dataset <dataset> 用于代码生成的数据集名称默认gsm8k
# --max_length <length> 模型最大输入 token 长度默认2048
# --top_p <threshold> 候选 token 相加的概率阈值默认0.8)。
# --eoh <end token> 用户输入结束标识符 (默认: "") 。
# --eoa <end token> 模型输入结束标识符 (默认: "") 。
# --eos <end token> 系统输入结束标识符. (默认: "") 。
# --temperature -t <temp> 生成过程中的采样温度默认1.0)。
# --time_out <time> 执行生成的代码的最大时间默认100
# --verbose, -v 打印代码错误信息(可选)。
# --append, -a 将输出追加到历史结果中(可选)。
```
以下是使用示例:
```bash
python tools/pal_inference.py internlm/internlm-chat-7k ./output -v
```
其输出文件每一行包括输入的问题,正确答案,执行答案,得分,以及模型生成的 Python 代码块:
````json
{
"question": "Janet\u2019s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?",
"target": 18.0,
"answer": 18.0,
"score": 1,
"generation": ["```python\ndef solution():\n eggs_per_day = 16\n eggs_per_breakfast = 3\n eggs_per_muffin = 4\n eggs_used = eggs_per_day - eggs_per_breakfast - eggs_per_muffin\n eggs_sold = eggs_used\n price_per_egg = 2\n eggs_made = eggs_sold * price_per_egg\n result = eggs_made\n return result\n```"]
}
````
InternLM 在 GSM8K 数据集中带工具和不带工具的性能表现:
| Method | **InternLM-Chat-7B** |
| -------- | -------------------- |
| w/o tool | 34.5 |
| w tool | 39.2 |

View File

@ -0,0 +1,109 @@
This directory provide some tools for model training with the following file structure.
```bash
├── transformers # tools for adapting Hugging Face's transformers
│ ├── configuration_internlm.py # tools for adapting config
│ ├── modeling_internlm.py # tools for adapting model
│ └── tokenization_internlm.py # tools for adapting tokenizer
│ └── convert2hf.py # tools for adapting models to Hugging Face's format
└── tokenizer.py # tools for generating `bin` and `meta` file for raw data
```
# tokenizer.py
We need to use a `tokenizer` to generate `bin` and `meta` files for raw data. We import the tokenizer model by specifying the model weight path in `tools/tokenizer.py`. Currently, we provide `V7.model` to generate tokens. If you want to use a different model, you can modify the model weight path in `tokenizer.py` directly.
We can run the following command to generate `bin` and `meta` files corresponding to the original data. The parameter `text_input_path` represents the path of the original text data, currently supporting `txt`, `json`, and `jsonl` formats, while `bin_output_path` represents the save path of the generated `bin` files.
```bash
$ python tools/tokenizer.py --text_input_path your_input_text_path --bin_output_path your_output_bin_path
```
An example of data processing in `txt` format is given here:
Given a file `raw_data.txt` containg raw data with the following content.
```bash
Appreciate every detail in life to truly taste the flavor of happiness.
Dreams are the source of lifes motivation. Pursue them diligently to achieve your goals.
Learn to be tolerant and understanding to establish truly harmonious interpersonal relationships.
```
Next, we can run the following command to generate `bin` and `meta` files for raw data.
```bash
$ python tools/tokenizer.py --text_input_path your_input_text_path --bin_output_path your_output_bin_path
```
It should be noted that the generated `bin` files should be placed in one of the following directories to clarify the data type: `cn`(Chinese), `en`(English), `code`(code data), `ja`(Japanese), `ar`(Arabic) and `kaoshi`(kaoshi data).
The format of generated `bin` file is as follows.
```python
{"tokens": [98655, 2317, 2922, 6649, 1595, 7856, 435, 2424, 442, 9556, 12807, 410, 17313, 446, 23331, 95746]}
{"tokens": [98655, 302, 1383, 269, 657, 410, 2687, 446, 2424, 98667, 269, 25220, 281, 523, 1874, 492, 1248, 38127, 4563, 442, 11227, 829, 8980, 95746]}
{"tokens": [98655, 24190, 442, 517, 15013, 649, 454, 8793, 442, 5849, 9556, 17917, 1369, 1084, 29890, 12021, 95746]}
```
In the generated `bin` file, each line (`sequence`) corresponds to the `tokens` for each sentence in the raw data.
The format of generated `meta` file in as follows.
```bash
(0, 16), (110, 24), (262, 17)
```
Each tuple in the `meta` file represents the meta information of each `sequence` where the first element in the tuple indicates the `starting index` of each `sequence` among all `sequences` and the second element indicates the amount of `tokens` for each `sequence`.
For example, the `starting index` is 0 for the first `sequence` with 16 `tokens`. Since the length of `sequence` in `string` format is 109, the `starting index` is 110. And the number of `tokens` of the sencond `sequence` is 24.
The `bin` and `meta` file formats for `json` and `jsonl` type files are the same as for `txt`, so we won't go over them here.
# pal_inference.py
Perform reasoning using [PAL](https://github.com/reasoning-machines/pal) on the [GSM8K](https://huggingface.co/datasets/gsm8k) dataset, allowing the model to generate code and solve mathematical problems through Python interpretation. Here's how you can use it:
```bash
# Usage:
python pal_inference.py <model> <out_dir> [--dataset <dataset>] [--max_length <length>] [--top_p <threshold>] [--eoh <end token>] [--eoa <end token>] [--eos <end token>] [--temperature <temp>] [--time_out <time>] [--verbose, -v] [--append, -a]
# Parameters:
# <model> Path to the model used for inference.
# <out_dir> Generated code will be saved in the specified output folder.
# Optional arguments:
# --dataset <dataset> Dataset name used for code generation (default: gsm8k).
# --max_length <length> Model's maximum input token length (default: 2048).
# --top_p <threshold> Probability threshold for candidate tokens (default: 0.8).
# --eoh <end token> End of human (user) token. (default: "").
# --eoa <end token> End of assistant (bot) token. (default: "").
# --eos <end token> End of system token. (default: "").
# --temperature, -t <temp> Sampling temperature during generation (default: 1.0).
# --time_out <time> Maximum time (in seconds) for executing the generated code (default: 100).
# --verbose, -v Print code error messages (optional).
# --append, -a ppend the output to historical results (optional).
```
Below is an example of usage:
```bash
python tools/pal_inference.py internlm/internlm-chat-7k ./output -v
```
The output file contains each line with the input question, the correct answer, the executed answer, the score, and the Python code block generated by the model:
````json
{
"question": "Janet\u2019s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?",
"target": 18.0,
"answer": 18.0,
"score": 1,
"generation": ["```python\ndef solution():\n eggs_per_day = 16\n eggs_per_breakfast = 3\n eggs_per_muffin = 4\n eggs_used = eggs_per_day - eggs_per_breakfast - eggs_per_muffin\n eggs_sold = eggs_used\n price_per_egg = 2\n eggs_made = eggs_sold * price_per_egg\n result = eggs_made\n return result\n```"]
}
````
InternLM performance in the GSM8K dataset with and without tools:
| Method | **InternLM-Chat-7B** |
| -------- | -------------------- |
| w/o tool | 34.5 |
| w tool | 39.2 |

Binary file not shown.

View File

@ -0,0 +1,164 @@
import argparse
import json
import os.path as osp
from pathlib import Path
import numpy as np
import sentencepiece as spm
from tqdm import tqdm
def process(dataset_path, sp_model):
"""Process data sample from input dataset
Args:
dataset_path (str): Path of dataset json file.
sp_model (str): Path of tokenizer.
Yields:
tuple: dumped processed data sample and length of tokens.
"""
dataset = json.load(open(dataset_path))
for data in dataset:
yield tokenize(get_chat_format_data(data), sp_model)
def get_chat_format_data(ori_data):
"""Format original data
Args:
ori_data (dict): input data sample.
Returns:
dict: data sample with chat format.
"""
input_str = ori_data["input"]
instruction_str = ori_data["instruction"]
output_str = ori_data["output"]
data = dict()
if input_str != "":
data["user"] = f"<|User|>:{instruction_str}\n{input_str}"
else:
data["user"] = f"<|User|>:{instruction_str}"
data["bot"] = f"<|Bot|>:{output_str}"
return data
def tokenize(sample, sp_model):
"""Tokenize input dataset
Args:
sample (dict): Input data sample.
sp_model (str): Path of tokenizer.
Returns:
tuple: dumped processed data sample and length of tokens.
"""
special_tokens_map = {"<eoh>": 103167, "<eoa>": 103166, "nl_id": 13}
token_ids = [sp_model.bos_id()]
human_s = sample["user"]
ass_s = sample["bot"]
human_ids = sp_model.encode(human_s) + [special_tokens_map["<eoh>"], special_tokens_map["nl_id"]]
human_ids_ignore = [-token_id for token_id in human_ids]
ass_template_ids = sp_model.encode("<|Bot|>:")
ass_template_ids_ignore = [-token_ids for token_ids in ass_template_ids]
ass_ids = (
ass_template_ids_ignore
+ sp_model.encode(ass_s[8:])
+ [special_tokens_map["<eoa>"], special_tokens_map["nl_id"]]
)
token_ids += human_ids_ignore + ass_ids
if len(token_ids) > 2047:
token_ids = token_ids[:2047]
token_ids += [sp_model.eos_id()]
line = str.encode(json.dumps({"tokens": token_ids}) + "\n")
return line, len(token_ids)
def dump_bin_meta_bin(samples, path, split_ratio=0.1):
"""Dump processed dataset
Args:
samples (dict): Input data sample.
path (str): Path for output dataset.
split_ratio (float): Ratio for validation dataset splitting.
Default to: 0.1.
Returns:
tuple: number of train/valid tokens of processed dataset,
number of train/valid samples of processed dataset.
"""
train_path = osp.join(path, "train/en/")
valid_path = osp.join(path, "valid/en/")
train_dir = Path(train_path)
valid_dir = Path(valid_path)
train_dir.mkdir(exist_ok=True, parents=True)
valid_dir.mkdir(exist_ok=True, parents=True)
train_f = open(train_dir.joinpath("dataset.bin"), "wb")
valid_f = open(valid_dir.joinpath("dataset.bin"), "wb")
train_tokens = 0
valid_tokens = 0
last_train_position = 0
last_valid_position = 0
train_samples = 0
valid_samples = 0
train_meta = []
valid_meta = []
sample_length = len(samples)
np.random.seed(0)
valid_indices = np.random.choice(range(sample_length), int(sample_length * split_ratio)).tolist()
count = -1
for line, token_num in samples:
count += 1
if count in valid_indices:
valid_tokens += token_num
valid_f.write(line)
valid_meta.append((last_valid_position, token_num))
last_valid_position += len(line)
valid_samples += 1
else:
train_tokens += token_num
train_f.write(line)
train_meta.append((last_train_position, token_num))
last_train_position += len(line)
train_samples += 1
train_f.close()
valid_f.close()
np.save(open(train_dir.joinpath("dataset.bin.meta"), "wb"), train_meta)
np.save(open(valid_dir.joinpath("dataset.bin.meta"), "wb"), valid_meta)
return train_tokens, valid_tokens, train_samples, valid_samples
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("dataset_path", type=str, help="path of dataset json file")
parser.add_argument("output_path", type=str, help="path of processed dataset")
parser.add_argument("tokenizer_path", type=str, help="path of tokenizer")
parser.add_argument("--split_ratio", type=float, default=0.1, help="ratio for validation dataset splitting")
args = parser.parse_args()
sp_model = spm.SentencePieceProcessor(model_file=args.tokenizer_path)
split_ratio = args.split_ratio
samples = []
dataset = process(args.dataset_path, sp_model)
for sample in tqdm(dataset):
samples.append(sample)
train_tokens, valid_tokens, train_samples, valid_samples = dump_bin_meta_bin(
samples, args.output_path, args.split_ratio
)
print(f"number of train dataset: {train_samples}, number of train dataset token: {train_tokens}")
print(f"number of validation dataset: {valid_samples}, number of validation dataset token: {valid_tokens}")

View File

@ -0,0 +1,320 @@
# This file is modified from:
# hhttps://github.com/reasoning-machines/pal/blob/main/pal/core/interface.py
#
# Copyright 2022 PAL Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import json
import os
from dataclasses import asdict
from typing import Any, Dict, List
import torch
import tqdm
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from tools.transformers.interface import GenerationConfig, generate_interactive
from internlm.utils.timeout import Timeout
def parse_args():
parser = argparse.ArgumentParser(description="PAL Inference")
parser.add_argument("model", type=str, help="Path to the pre-trained LLM used for inference.")
parser.add_argument(
"out_dir", type=str, help="Name of the output folder where generated code snippets will be saved."
)
parser.add_argument("--dataset", default="gsm8k", type=str, help="Name of the dataset used for code generation.")
parser.add_argument(
"--max_length",
default=2048,
type=int,
help="Maximum input token length for the natural language description.",
)
parser.add_argument(
"--top_p",
default=0.8,
type=float,
help="Probability threshold to choose sample tokens during generation.",
)
parser.add_argument(
"--eoh",
default="",
type=str,
help="End of human (user) token.",
)
parser.add_argument(
"--eoa",
default="",
type=str,
help="End of assistant (bot) token.",
)
parser.add_argument(
"--eos",
default="",
type=str,
help="End of system token.",
)
parser.add_argument(
"--temperature", "-t", default=1.0, type=float, help="Temperature of token sampling during generation."
)
parser.add_argument(
"--time_out", default=100, type=float, help="Maximum time allowed for executing generated code."
)
parser.add_argument(
"--verbose",
"-v",
action="store_true",
help="Print code error information when executing generated code (optional).",
)
parser.add_argument("--append", "-a", action="store_true", help="Append output to the history results (optional).")
args = parser.parse_args()
return args
class GenericRuntime:
"""Adapted from https://github.com/reasoning-machines/pal"""
GLOBAL_DICT: dict = {}
LOCAL_DICT = None
HEADERS: List = []
def __init__(self):
self._global_vars = copy.copy(self.GLOBAL_DICT)
self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
for c in self.HEADERS:
self.exec_code(c)
def exec_code(self, code_piece: str) -> None:
exec(code_piece, self._global_vars)
def eval_code(self, expr: str) -> Any:
return eval(expr, self._global_vars)
def inject(self, var_dict: Dict[str, Any]) -> None:
for k, v in var_dict.items():
self._global_vars[k] = v
@property
def answer(self):
return self._global_vars["answer"]
class PALInterface:
"""PAL interface wrap fun:`generate_interactive` to extract and execute
generated code.
Adapted from https://github.com/reasoning-machines/pal
Args:
model (AutoModelForCausalLM)
tokenizer (AutoTokenizer)
generation_config (GenerationConfig): Decode strategies
additional_eos_token_id (int): End of sentence token id, default: 103028
get_answer_expr (str): The function name of generated code, default: "solution()"
verbose (bool): Print error information
"""
def __init__(
self,
model: AutoModelForCausalLM,
tokenizer: AutoTokenizer,
generation_config: GenerationConfig,
additional_eos_token_id: int = 103028,
get_answer_expr: str = "solution()",
verbose: bool = False,
):
self.runtime = GenericRuntime()
self.history: List = []
self.model = model
self.tokenizer = tokenizer
self.generation_config = generation_config
self.additional_eos_token_id = additional_eos_token_id
self.answer_expr = get_answer_expr
self.verbose = verbose
def generate(self, prompt):
# The api will generate response word by word
# we only need the last generation as the final results
for cur_gen in generate_interactive(
model=self.model,
tokenizer=self.tokenizer,
prompt=prompt,
additional_eos_token_id=self.additional_eos_token_id,
**asdict(self.generation_config),
):
continue
# Get final response
self.history.append(cur_gen)
# Extract code block
code = self.process_generation_to_code(cur_gen)
return code
def process_generation_to_code(self, gens: str):
if "```python" in gens:
gens = gens.split("```python")[1].split("```")[0]
elif "```" in gens:
gens = gens.split("```")[1].split("```")[0]
code = gens.split("\n")
return code
def run(self, prompt, time_out: float = 100):
code = self.generate(prompt)
with Timeout(time_out):
try:
exec_result = self.execute(code)
except Exception as e:
if self.verbose:
print(e)
return exec_result
def execute(self, code: List[str]):
self.runtime.exec_code("\n".join(code))
return self.runtime.eval_code(self.answer_expr)
def clear_history(self):
self.history = []
def load_model(args):
model = AutoModelForCausalLM.from_pretrained(args.model, trust_remote_code=True).to(torch.bfloat16).cuda()
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
return model, tokenizer
def load_data(args):
# Load data from huggingface dataset
if args.dataset == "gsm8k":
gsm8k = load_dataset(path=args.dataset, name="main")
test_set = gsm8k["test"]
input_data = []
for data in test_set:
question = data["question"]
target = float(data["answer"].split("#")[-1].replace(",", ""))
input_data.append({"question": question, "target": target})
else:
raise NotImplementedError
return input_data
PROMPT = """<|System|>:You are a helpful assistant which use tools to solve mathematical reasoning questions. The tools you can use are:
PythonExecutor: It can execute Python code. The code must be a function, and the function name must be 'solution'. The example format is as follows:
```python
def solution():
variable_names_with_real_meaning = func(variable)
return variable_names_with_real_meaning
```{eos}
<|User|>:Olivia has $23. She bought five bagels for $3 each. How much money does she have left?{eoh}
<|Bot|>:
```python
def solution():
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result
```{eoa}
<|User|>:Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?{eoh}
<|Bot|>:
```python
def solution():
golf_balls_initial = 58
golf_balls_lost_tuesday = 23
golf_balls_lost_wednesday = 2
golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday
result = golf_balls_left
return result
```{eoa}
<|User|>:There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?{eoh}
<|Bot|>:
```python
def solution():
computers_initial = 9
computers_per_day = 5
num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days
computers_total = computers_initial + computers_added
result = computers_total
return result
```{eoa}
<|System|>:How about this question?{eos}
<|User|>:{question}{eoh}
<|Bot|>:""".strip()
def main():
args = parse_args()
print("load model begin.")
model, tokenizer = load_model(args)
print("load model end.")
generation_config = GenerationConfig(max_length=args.max_length, top_p=args.top_p, temperature=args.temperature)
verbose = args.verbose
interface = PALInterface(model=model, tokenizer=tokenizer, generation_config=generation_config, verbose=verbose)
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
savepath = os.path.join(args.out_dir, args.dataset + ".json")
# Load from history results
if args.append and os.path.exists(savepath):
lines = open(savepath).readlines()
num_skip_exps = len(lines)
scores = [x["score"] for x in map(json.loads, lines)]
else:
num_skip_exps = 0
scores = []
examples = load_data(args)
with open(savepath, "a" if args.append else "w") as f:
pbar = tqdm.tqdm(examples[num_skip_exps:], initial=num_skip_exps, total=len(examples))
for x in pbar:
question = x["question"]
result = copy.copy(x)
try:
answer = interface.run(
prompt=PROMPT.format(question=question, eoh=args.eoh, eoa=args.eoa, eos=args.eos),
time_out=args.time_out,
)
answer = float(answer)
score = 1 if abs(answer - x["target"]) < 1e-3 else 0
except Exception as e:
if verbose:
print(e)
answer = ""
score = 0
scores.append(score)
result["answer"] = answer
result["score"] = score
result["generation"] = interface.history
f.write(json.dumps(result) + "\n")
interface.clear_history()
f.flush()
print(f"{args.model}: Accuracy - {sum(scores) / len(scores)}")
torch.cuda.empty_cache()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,142 @@
import argparse
import json
import os
import sys
import numpy as np
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(current_dir, "V7_sft.model")
sys.path.append(os.path.join(current_dir, "transformers"))
from tokenization_internlm import InternLMTokenizer
tokenizer = InternLMTokenizer(vocab_file=model_path)
def write_bin(context: str, bin_file) -> None:
"""
Write bin file based on the context.
Args:
context (str): the context of raw file.
bin_file (file handler): the opened bin file.
Example:
>>> write_bin("今天天气晴朗适合出门散步", "out.bin") # the output file format is 'txt'
>>> out.bin
>>> {"tokens": [67577, 69095, 63010, 61770, 67783, 69301, 74732]}
"""
# encode the context into tokens, which is a list, eg. [67577, 69095, 63010, 61770, 67783, 69301, 74732]
tokens = tokenizer.encode(context)
# transfer the list into dic, key is str 'tokens', value is tokens.
# eg. {"tokens": [67577, 69095, 63010, 61770, 67783, 69301, 74732]}
data = dict(tokens=tokens)
# encode the data into bytes to save
saved_bin = str.encode(json.dumps(data) + "\n")
# write bytes into bin_file
bin_file.write(saved_bin)
def prepare_meta(bin_output_path: str):
"""
Prepare metadata for the given bin file.
Args:
bin_output_path (str): Output bin file path.
"""
meta = []
cur = 0
with open(bin_output_path, "rb") as f:
while True:
# read lines
line = f.readline()
# if line is empty, then break
if line == b"":
break
# obtain the token amount of each line
length = len(json.loads(line)["tokens"])
# meta is a list of tuple(cur, length)
# cur: the start index of each line
# length: the token amount of each line
meta.append((cur, length))
# update the cur to generate the meta information of next line
cur += len(line)
# define path of the generated meta file
meta_fp = bin_output_path + ".meta"
# save the generated meta information
with open(meta_fp, "wb") as f:
meta = np.array(meta, dtype=np.int32)
np.save(f, meta)
def text2bin(text_input_path: str, bin_output_path: str):
"""
Read content from the input file and write to bin file.
Currently support 3 input formats: 'txt', 'json' and 'jsonl'.
Args:
text_input_path (str): txt file path.
bin_output_path (str): output bin file path.
"""
# Check if the txt file exists
if not os.path.isfile(text_input_path):
raise FileNotFoundError(f"{text_input_path} does not exist.")
file_format = text_input_path.split(".")[-1]
assert file_format in ["txt", "json", "jsonl"], print(
"Invalid input file type. Currently support `txt`, `json` and `jsonl`."
)
with open(text_input_path, "r") as text_file, open(bin_output_path, "ab") as bin_file:
if file_format == "txt":
for line in text_file:
# Strip any leading/trailing whitespace
stripped_line = line.strip()
if stripped_line:
# Pass each line to the write_bin function
write_bin(stripped_line, bin_file)
elif file_format == "json":
data = json.load(text_file)
# assuming data is a list of dictionaries
for record in data:
# the type of record is dict, transfer the dict into str
context = json.dumps(record)
# encode the str and write into bin
write_bin(context, bin_file)
elif file_format == "jsonl":
for line in text_file:
# encode the str and write into bin
write_bin(line, bin_file)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--text_input_path",
type=str,
required=True,
help="Path to the input text file.",
)
parser.add_argument("--bin_output_path", type=str, required=True, help="Path to the output bin file.")
return parser.parse_args()
def main():
# parse arguments
args = parse_args()
text2bin(args.text_input_path, args.bin_output_path)
print(f"Successfully converted {args.text_input_path} to {args.bin_output_path}")
# To avoid potential read/write errors, the metadata preparation follows after creating the .bin file.
prepare_meta(args.bin_output_path)
print(f"Successfully generated {args.bin_output_path}.meta")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,25 @@
# InternLM Transformers
[English](./README.md) |
[简体中文](./README-zh-Hans.md)
该文件夹下包含了 transformers 格式的 `InternLM` 模型。
## 权重转换
`convert2hf.py` 可以将训练保存的权重一键转换为 transformers 格式。在仓库根目录运行以下命令:
```bash
python tools/transformers/convert2hf.py --src_folder origin_ckpt/ --tgt_folder hf_ckpt/ --tokenizer ./tools/V7_sft.model
```
然后可以使用 `from_pretrained` 接口加载:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> model = AutoModel.from_pretrained("hf_ckpt/", trust_remote_code=True).cuda()
```
`intern_moss_example.py` 展示了如何使用 LoRA 来在 `fnlp/moss-moon-002-sft` 数据集上进行微调的样例。

View File

@ -0,0 +1,23 @@
# InternLM Transformers
[English](./README.md) |
[简体中文](./README-zh-Hans.md)
This folder contains the `InternLM` model in transformers format.
## Weight Conversion
`convert2hf.py` can convert saved training weights into the transformers format with a single command. Execute the command in the root directory of repository:
```bash
python tools/transformers/convert2hf.py --src_folder origin_ckpt/ --tgt_folder hf_ckpt/ --tokenizer ./tools/V7_sft.model
```
Then, you can load it using the `from_pretrained` interface:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> model = AutoModel.from_pretrained("hf_ckpt/", trust_remote_code=True).cuda()
```
`intern_moss_example.py` demonstrates an example of how to use LoRA for fine-tuning on the `fnlp/moss-moon-002-sft` dataset.

View File

@ -0,0 +1,120 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" InternLM model configuration"""
from transformers.utils import logging
from transformers.configuration_utils import PretrainedConfig
logger = logging.get_logger(__name__)
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class InternLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate an InternLM
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the InternLM-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`InternLMModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
Example:
```python
>>> from transformers import InternLMModel, InternLMConfig
>>> # Initializing a InternLM internlm-7b style configuration
>>> configuration = InternLMConfig()
>>> # Initializing a model from the internlm-7b style configuration
>>> model = InternLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "internlm"
_auto_class = "AutoConfig"
def __init__(
self,
vocab_size=103168,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
bias=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.bias = bias
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -0,0 +1,175 @@
import argparse
import math
import json
import os
import re
import tempfile
import torch
from modeling_internlm import InternLMConfig, InternLMForCausalLM
from tokenization_internlm import InternLMTokenizer
NUM_SHARDS = {
"7B": 1,
}
def convert2hf(model_config, states_tp_pps):
with tempfile.TemporaryDirectory() as folder:
states = merge_pp(states_tp_pps)[0]
if "embedding.word_embeddings.weight" in states:
embedding_key = "embedding.word_embeddings.weight"
elif "embedding.weight" in states:
embedding_key = "embedding.weight"
else:
print("Check embedding states'names in below:", flush=True)
print(list(states.keys()), flush=True)
dims_per_head = model_config["hidden_size"] // model_config["num_attention_heads"]
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
current_states = {}
current_states["model.embed_tokens.weight"] = states.pop(embedding_key)
current_states["model.norm.weight"] = states.pop("norm.weight")
current_states["lm_head.weight"] = states.pop("head.weight")
for i in range(model_config["num_layers"]):
states.pop(f"blocks.{i}.mixer.rotary_emb.inv_freq", None)
wqkv = states.pop(f"blocks.{i}.mixer.Wqkv.weight").reshape(
3, model_config["num_attention_heads"], -1, model_config["hidden_size"]
)
bqkv = states.pop(f"blocks.{i}.mixer.Wqkv.bias").reshape(3, model_config["num_attention_heads"], -1)
current_states[f"model.layers.{i}.self_attn.q_proj.weight"] = wqkv[0].reshape(
-1, model_config["hidden_size"]
)
current_states[f"model.layers.{i}.self_attn.q_proj.bias"] = bqkv[0].reshape(-1)
current_states[f"model.layers.{i}.self_attn.k_proj.weight"] = wqkv[1].reshape(
-1, model_config["hidden_size"]
)
current_states[f"model.layers.{i}.self_attn.k_proj.bias"] = bqkv[1].reshape(-1)
current_states[f"model.layers.{i}.self_attn.v_proj.weight"] = wqkv[2].reshape(
-1, model_config["hidden_size"]
)
current_states[f"model.layers.{i}.self_attn.v_proj.bias"] = bqkv[2].reshape(-1)
current_states[f"model.layers.{i}.self_attn.o_proj.weight"] = states.pop(
f"blocks.{i}.mixer.out_proj.weight"
)
current_states[f"model.layers.{i}.self_attn.o_proj.bias"] = states.pop(f"blocks.{i}.mixer.out_proj.bias")
current_states[f"model.layers.{i}.mlp.gate_proj.weight"] = states.pop(f"blocks.{i}.mlp.w1.weight")
current_states[f"model.layers.{i}.mlp.down_proj.weight"] = states.pop(f"blocks.{i}.mlp.w3.weight")
current_states[f"model.layers.{i}.mlp.up_proj.weight"] = states.pop(f"blocks.{i}.mlp.w2.weight")
current_states[f"model.layers.{i}.input_layernorm.weight"] = states.pop(f"blocks.{i}.norm1.weight")
current_states[f"model.layers.{i}.post_attention_layernorm.weight"] = states.pop(f"blocks.{i}.norm2.weight")
current_states[f"model.layers.{i}.self_attn.rotary_emb.inv_freq"] = inv_freq
config = InternLMConfig(
hidden_size=model_config["hidden_size"],
intermediate_size=compute_intermediate_size(model_config["hidden_size"]),
num_attention_heads=model_config["num_attention_heads"],
num_hidden_layers=model_config["num_layers"],
rms_norm_eps=1e-06,
bias=True,
)
if model_config["vocab_size"] != -1:
config.vocab_size = model_config["vocab_size"]
config.save_pretrained(folder)
torch.save(current_states, os.path.join(folder, "pytorch_model.bin"))
model = InternLMForCausalLM.from_pretrained(folder, torch_dtype=torch.float16)
del model.config._name_or_path
return config, model
def compute_intermediate_size(n):
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
def merge_pp(states_tp_pp):
max_tp = len(states_tp_pp)
max_pp = len(states_tp_pp[0])
full_states = []
for tp in range(max_tp):
layer_shift = 0
tp_states = {}
for pp in range(max_pp):
_layer_shift = 0
states = states_tp_pp[tp][pp]
keys = list(states.keys())
for key in keys:
match = re.search("\.\d+\.", key)
if match is not None:
s, e = match.span()
layer_idx = int(key[s + 1 : e - 1]) + layer_shift
_layer_shift = max(_layer_shift, int(key[s + 1 : e - 1]))
name = key[:s] + f".{layer_idx}." + key[e:]
tp_states[name] = states[key]
else:
tp_states[key] = states[key]
layer_shift += _layer_shift + 1
full_states.append({(key[6:] if key.startswith("model.") else key): value for key, value in tp_states.items()})
return full_states
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--src_folder', type=str, default='~/test/') # 需要转换为hf格式的checkpoint文件夹
parser.add_argument('--tgt_folder', type=str, default='~/output/') # 存放转换后checkpoint的目标文件夹
parser.add_argument('--tokenizer', type=str, default='~/test/tokenizer.model') # Tokenizer 文件的路径
args = parser.parse_args()
def load(fp):
with open(fp, "rb") as f:
pt_data = torch.load(f, map_location="cpu")
return pt_data
folder = args.src_folder
target_folder = args.tgt_folder
model_config = load(os.path.join(folder, "model_config.pt"))
fns = list(os.listdir(folder))
model_fns = []
for fn in fns:
if fn.startswith("model_t") and not fn.endswith("md5"):
model_fns.append(fn)
max_tp, max_pp = -1, -1
for fn in model_fns:
_, tp, pp = os.path.splitext(fn)[0].split("_")
max_pp = max(max_pp, int(pp[2:]) + 1)
max_tp = max(max_tp, int(tp[2:]) + 1)
states_tp_pps = [[]]
for pp in range(max_pp):
model_name = f"model_tp0_pp{pp}.pt"
states = load(os.path.join(folder, model_name))
states_tp_pps[0].append(states)
config, model = convert2hf(model_config, states_tp_pps)
os.makedirs(target_folder, exist_ok=True)
model.save_pretrained(target_folder, max_shard_size="20GB")
# TODO There should be a better way to add this.
with open(os.path.join(target_folder, "config.json")) as fp:
config_dict = json.load(fp)
config_dict["auto_map"]["AutoModel"] = "modeling_internlm.InternLMForCausalLM"
with open(os.path.join(target_folder, "config.json"), "w") as fp:
json.dump(config_dict, fp, indent=2)
tokenizer = InternLMTokenizer(args.tokenizer)
tokenizer.save_pretrained(target_folder)

View File

@ -0,0 +1,137 @@
import copy
import warnings
from dataclasses import dataclass
from typing import Callable, List, Optional
import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
from transformers.utils import logging
logger = logging.get_logger(__name__)
@dataclass
class GenerationConfig:
max_length: Optional[int] = None
top_p: Optional[float] = None
temperature: Optional[float] = None
do_sample: Optional[bool] = True
repetition_penalty: Optional[float] = 1.0
@torch.inference_mode()
def generate_interactive(
model,
tokenizer,
prompt,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
additional_eos_token_id: Optional[int] = None,
**kwargs,
):
inputs = tokenizer([prompt], padding=True, return_tensors="pt")
input_length = len(inputs["input_ids"][0])
for k, v in inputs.items():
inputs[k] = v.cuda()
input_ids = inputs["input_ids"]
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:
generation_config = model.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs)
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if additional_eos_token_id is not None:
eos_token_id.append(additional_eos_token_id)
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logger.warn(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
logits_processor = model._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
stopping_criteria = model._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
logits_warper = model._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
scores = None
while True:
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = model(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if generation_config.do_sample:
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = model._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=False
)
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
output_token_ids = input_ids[0].cpu().tolist()
output_token_ids = output_token_ids[input_length:]
for each_eos_token_id in eos_token_id:
if output_token_ids[-1] == each_eos_token_id:
output_token_ids = output_token_ids[:-1]
response = tokenizer.decode(output_token_ids)
yield response
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
break

View File

@ -0,0 +1,69 @@
import torch
from torch.utils.data import DataLoader
from peft import get_peft_model, LoraConfig, TaskType
from transformers import get_linear_schedule_with_warmup
from transformers import AutoModelForCausalLM, AutoTokenizer
from tqdm import tqdm
from moss_002_sft import get_dataset, collate_fn
model_path = "model_path"
data_dir = "moss_002_sft"
data_num = -1
test_size = 10
train_batch_size = 1
epochs = 5
val_per_steps = 1000
lr = 9e-6
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, r=32, lora_alpha=32, lora_dropout=0.1,
target_modules=["gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj"]
)
# model
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = get_peft_model(model, peft_config)
model.cuda()
# dataset
train_dataset, val_dataset = get_dataset(tokenizer, data_dir, num=data_num, test_size=test_size)
train_dataloader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True, collate_fn=lambda x: collate_fn(x, tokenizer))
optimizer = torch.optim.AdamW(model.parameters(), lr)
scheduler = get_linear_schedule_with_warmup(
optimizer, 1000, epochs * len(train_dataloader)
)
# train
fp = open("output", "w")
model.train()
for epoch in tqdm(range(epochs), desc="Traning Epoch"):
batch_bar = tqdm(train_dataloader, desc="Training Batch")
for step, batch in enumerate(batch_bar):
batch = {k:v.cuda() for k, v in batch.items()}
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
output = model(**batch)
loss = output.loss
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
batch_bar.set_postfix({"loss": loss.item()})
if (step + 1) % val_per_steps == 0:
fp.write(f"Epoch {epoch} Batch {step}: Loss={loss.item()}\n")
for i in tqdm(range(len(val_dataset)), desc="Generating"):
data, label = val_dataset[i]
prefix = tokenizer.decode(data.tolist(), skip_special_tokens=True)
try:
generate = model.generate(input_ids=data.unsqueeze(0).cuda(), temperature=0.7, top_k=50, do_sample=True, repetition_penalty=1.02, max_new_tokens=100, top_p=0.9)
text = tokenizer.decode(generate[0].tolist(), skip_special_tokens=True)
text = text.replace(prefix, "")
fp.write(f"Prefix: {prefix}\nGenerated: {text}" + "\n---------------------------------\n")
except Exception as e:
fp.write(f"Prefix: {prefix}\nError: {e}" + "\n---------------------------------\n")
fp.write("\n==============================\n")
model.train()
torch.cuda.empty_cache()

View File

@ -0,0 +1,105 @@
import os
import copy
import torch
from torch.utils.data import Dataset
from datasets import load_dataset, Dataset as HFDataset
class SFTDataset(Dataset):
# https://github.com/OpenLMLab/MOSS/blob/main/finetune_moss.py
def __init__(self, dataset):
super().__init__()
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
data = copy.deepcopy(self.dataset[index]["input_ids"])
no_loss_spans = copy.deepcopy(self.dataset[index]["no_loss_spans"])
data = torch.tensor(data, dtype=torch.long)
label = copy.deepcopy(data)
for no_loss_span in no_loss_spans:
label[no_loss_span[0] : no_loss_span[1]] = -100
return data, label
def collate_fn(batch, tokenizer):
batch_input_ids, batch_labels = [], []
for input_ids, label in batch:
batch_input_ids.append(input_ids)
batch_labels.append(label)
batch_input_ids = torch.nn.utils.rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.eos_token_id)
batch_labels = torch.nn.utils.rnn.pad_sequence(batch_labels, batch_first=True, padding_value=-100)
return {
"input_ids": batch_input_ids,
"attention_mask": (batch_input_ids == tokenizer.eos_token_id).long(),
"labels": batch_labels
}
def process(sample, tokenizer, max_len):
chat = sample["plain_text"].split("<eoa>")[:-1]
num_turns = sample["num_turns"]
meta_instruction = sample["prefix"]
# encode instruction
instruction_ids = tokenizer.encode(meta_instruction)
assert isinstance(instruction_ids, list), instruction_ids
assert len(instruction_ids) > 0, len(instruction_ids)
input_ids = copy.deepcopy(instruction_ids)
# We do not calculate loss for instruction.
no_loss_spans = [(0, len(instruction_ids))]
for i in range(num_turns):
# Collect dialogues
cur_turn_ids = []
cur_no_loss_spans = []
# Add to cur_turn_ids
cur_turn_ids.extend(tokenizer.encode(chat[i] + "<eoa>"))
# if key == 'Tool Responses':
# # The format tokens (<|Results|>:...<eor>\n) should have losses.
# cur_no_loss_spans.append((len(input_ids + cur_turn_ids) + 5, len(input_ids + cur_turn_ids + cur_ids) - 2))
if len(input_ids + cur_turn_ids) > max_len:
# Too long, break
break
# Extend input_ids
input_ids.extend(cur_turn_ids)
no_loss_spans.extend(cur_no_loss_spans)
if len(input_ids) == len(instruction_ids):
# No dialogue, return
return {"input_ids": [], "no_loss_spans": []}
else:
return {"input_ids": input_ids, "no_loss_spans": no_loss_spans}
def load_data(save_dir, tokenizer, max_len, num=-1) -> HFDataset:
if os.path.exists(save_dir):
print(f"Loading moss-002-sft from {save_dir}")
else:
print(f"Loading moss-002-sft from datasets")
moss_sft = load_dataset("fnlp/moss-002-sft-data", split="train")
moss_sft = moss_sft.map(lambda x:process(x, tokenizer, max_len), num_proc=10)
moss_sft = moss_sft.filter(lambda x:len(x["input_ids"]) != 0)
moss_sft.save_to_disk(save_dir)
moss_sft = HFDataset.load_from_disk(save_dir)
if num != -1:
moss_sft = moss_sft.select(range(num))
print(
f"Load successfully, total {len(moss_sft)} samples.")
return moss_sft
def get_dataset(tokenizer, save_dir, max_len=1024, num=-1, test_size=0.1):
moss_sft_data = load_data(save_dir, tokenizer, max_len, num)
moss_sft_split = moss_sft_data.train_test_split(test_size=test_size)
train_dataset = SFTDataset(moss_sft_split["train"])
val_dataset = SFTDataset(moss_sft_split["test"])
return train_dataset, val_dataset

View File

@ -0,0 +1,998 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch InternLM model."""
import math
from typing import List, Optional, Tuple, Union
import threading, queue
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.generation.streamers import BaseStreamer
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from configuration_internlm import InternLMConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "InternLMConfig"
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
class InternLMRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
InternLMRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class InternLMRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("inv_freq", inv_freq)
# Build here to make `torch.jit.trace` work.
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class InternLMMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class InternLMAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternLMConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
self.rotary_emb = InternLMRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class InternLMDecoderLayer(nn.Module):
def __init__(self, config: InternLMConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = InternLMAttention(config=config)
self.mlp = InternLMMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
INTERNLM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`InternLMConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare InternLM Model outputting raw hidden-states without any specific head on top.",
INTERNLM_START_DOCSTRING,
)
class InternLMPreTrainedModel(PreTrainedModel):
config_class = InternLMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["InternLMDecoderLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, InternLMModel):
module.gradient_checkpointing = value
INTERNLM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare InternLM Model outputting raw hidden-states without any specific head on top.",
INTERNLM_START_DOCSTRING,
)
class InternLMModel(InternLMPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
Args:
config: InternLMConfig
"""
_auto_class = "AutoModel"
def __init__(self, config: InternLMConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
@add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class InternLMForCausalLM(InternLMPreTrainedModel):
_auto_class = "AutoModelForCausalLM"
def __init__(self, config):
super().__init__(config)
self.model = InternLMModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, InternLMForCausalLM
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
prompt = ""
for record in history:
prompt += f"""<s><|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
if len(prompt) == 0:
prompt += "<s>"
prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
return tokenizer([prompt], return_tensors="pt")
@torch.no_grad()
def chat(self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
streamer: Optional[BaseStreamer] = None,
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 0.8,
top_p: float = 0.8,
**kwargs):
inputs = self.build_inputs(tokenizer, query, history)
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
outputs = self.generate(**inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
**kwargs)
outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]):]
response = tokenizer.decode(outputs, skip_special_tokens=True)
response = response.split("<eoa>")[0]
history = history + [(query, response)]
return response, history
@torch.no_grad()
def stream_chat(self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 0.8,
top_p: float = 0.8,
**kwargs):
"""
Return a generator in format: (response, history)
Eg.
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
"""
response_queue = queue.Queue(maxsize=20)
class ChatStreamer(BaseStreamer):
def __init__(self, tokenizer) -> None:
super().__init__()
self.tokenizer = tokenizer
self.queue = response_queue
self.query = query
self.history = history
self.response = ""
self.received_inputs = False
self.queue.put((self.response, history + [(self.query, self.response)]))
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("ChatStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if not self.received_inputs:
# The first received value is input_ids, ignore here
self.received_inputs = True
return
token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
if token.strip() != "<eoa>":
self.response = self.response + token
history = self.history + [(self.query, self.response)]
self.queue.put((self.response, history))
def end(self):
self.queue.put(None)
def stream_producer():
return self.chat(
tokenizer=tokenizer,
query=query,
streamer=ChatStreamer(tokenizer=tokenizer),
history=history,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
**kwargs
)
def consumer():
producer = threading.Thread(target=stream_producer)
producer.start()
while True:
res = response_queue.get()
if res is not None:
return
yield res
return consumer()
@add_start_docstrings(
"""
The InternLM Model transformer with a sequence classification head on top (linear layer).
[`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
INTERNLM_START_DOCSTRING,
)
class InternLMForSequenceClassification(InternLMPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = InternLMModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)

View File

@ -0,0 +1,242 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for IntermLM."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
PRETRAINED_VOCAB_FILES_MAP = {}
class InternLMTokenizer(PreTrainedTokenizer):
"""
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
_auto_class = "AutoTokenizer"
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="</s>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
decode_with_prefix_space=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.decode_with_prefix_space = decode_with_prefix_space
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
self._no_prefix_space_tokens = None
""" Initialisation"""
@property
def no_prefix_space_tokens(self):
if self._no_prefix_space_tokens is None:
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("")}
return self._no_prefix_space_tokens
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
@property
def bos_token_id(self) -> Optional[int]:
return self.sp_model.bos_id()
@property
def eos_token_id(self) -> Optional[int]:
return self.sp_model.eos_id()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text):
"""Returns a tokenized string."""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def _maybe_add_prefix_space(self, tokens, decoded):
if tokens and tokens[0] not in self.no_prefix_space_tokens:
return " " + decoded
else:
return decoded
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
out_string = self.clean_up_tokenization(out_string)
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
return out_string[1:]
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is not None:
output = output + token_ids_1
if self.add_eos_token:
output = output + [self.eos_token_id]
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]

109
开源模型 Qwen/Qwen.py Normal file
View File

@ -0,0 +1,109 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
"""
import streamlit as st
st.set_page_config(
page_title="Chat",
layout='wide'
)
choose_load_model = 1 # 选择加载的模型Qwen-7B 或 Qwen-14B
if choose_load_model == 0:
# Qwen-7B需要8G显存
@st.cache_resource
def load_model_qwen_7B():
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-7B-Chat-Int4",
device_map="auto",
trust_remote_code=True,
).eval()
return tokenizer, model
tokenizer_qwen_7B, model_qwen_7B = load_model_qwen_7B()
elif choose_load_model == 1:
# Qwen-14B需要12G显存
@st.cache_resource
def load_model_qwen_14B():
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-14B-Chat-Int4",
device_map="auto",
trust_remote_code=True
).eval()
return tokenizer, model
tokenizer_qwen_14B, model_qwen_14B = load_model_qwen_14B()
with st.sidebar:
with st.expander('参数', expanded=True):
max_length = 409600
top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session')
def reset_parameter():
st.session_state['top_p_session'] = 0.8
st.session_state['temperature_session'] = 0.8
reset_parameter_button = st.button('重置参数', on_click=reset_parameter)
prompt = st.chat_input("在这里输入您的命令")
from transformers.generation import GenerationConfig
if choose_load_model == 0:
config_qwen_7b = GenerationConfig.from_pretrained(
"Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature
)
def chat_response_qwen_7B(query):
for response in model_qwen_7B.chat_stream(tokenizer_qwen_7B, query, history=st.session_state.history_qwen, generation_config=config_qwen_7b):
message_placeholder_qwen.markdown(response)
if stop_button:
break
st.session_state.history_qwen.append((query, response))
st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
return response
elif choose_load_model == 1:
config_qwen_14b = GenerationConfig.from_pretrained(
"Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature
)
def chat_response_qwen_14B(query):
for response in model_qwen_14B.chat_stream(tokenizer_qwen_14B, query, history=st.session_state.history_qwen, generation_config=config_qwen_14b):
message_placeholder_qwen.markdown(response)
if stop_button:
break
st.session_state.history_qwen.append((query, response))
st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
return response
def clear_all():
st.session_state.history_qwen = []
st.session_state.ai_response = []
if 'history_qwen' not in st.session_state:
st.session_state.history_qwen = []
if 'ai_response' not in st.session_state:
st.session_state.ai_response = []
for ai_response in st.session_state.ai_response:
with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
st.markdown(ai_response["content"])
prompt_placeholder = st.chat_message("user", avatar='user')
with st.chat_message("robot", avatar="assistant"):
message_placeholder_qwen = st.empty()
if prompt:
prompt_placeholder.markdown(prompt)
st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
stop = st.empty()
stop_button = stop.button('停止', key='break_response')
if choose_load_model == 0:
chat_response_qwen_7B(prompt)
elif choose_load_model == 1:
chat_response_qwen_14B(prompt)
stop.empty()
button_clear = st.button("清空", on_click=clear_all, key='clear')

View File

@ -0,0 +1,6 @@
transformers==4.32.0
accelerate
tiktoken
einops
transformers_stream_generator==0.0.4
scipy

View File

@ -0,0 +1,91 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
"""
import streamlit as st
st.set_page_config(
page_title="Chat",
layout='wide'
)
try:
import zhipuai
except:
import os
os.system('pip install zhipuai')
import zhipuai
# 从官网获取 API_KEY
zhipuai.api_key = " "
with st.sidebar:
with st.expander('参数', expanded=True):
top_p = st.slider('top_p', 0.01, 1.0, value=0.7, step=0.01)
temperature = st.slider('temperature', 0.01, 1.0, value=0.95, step=0.01)
def chatglm_chat(prompt=[]):
response = zhipuai.model_api.sse_invoke(
model="chatglm_turbo",
prompt=prompt,
temperature=temperature,
top_p=top_p,
)
return response
def getlength(text):
length = 0
for content in text:
temp = content["content"]
leng = len(temp)
length += leng
return length
def checklen(text):
while (getlength(text) > 8000):
del text[0]
return text
def getText(role,content, text):
jsoncon = {}
jsoncon["role"] = role
jsoncon["content"] = content
text.append(jsoncon)
return text
answer = ""
if "text0" not in st.session_state:
st.session_state.text0 = []
if "messages0" not in st.session_state:
st.session_state.messages0 = []
def clear_all0():
st.session_state.messages0 = []
st.session_state.text0 = []
if st.session_state.messages0 == []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
for message in st.session_state.messages0:
with st.chat_message(message["role"], avatar=message.get("avatar")):
st.markdown(message["content"])
prompt_text = st.chat_input("请在这里输入您的命令")
if prompt_text:
if st.session_state.messages0 != []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
input_placeholder.markdown(prompt_text)
st.session_state.messages0.append({"role": "user", "content": prompt_text, "avatar": "user"})
st.session_state.text0 = getText("user", prompt_text, st.session_state.text0)
question = checklen(st.session_state.text0)
response = chatglm_chat(question)
for event in response.events():
answer += event.data
message_placeholder.markdown(answer)
st.session_state.text0 = getText("assistant", answer, st.session_state.text0)
st.session_state.messages0.append({"role": "robot", "content": answer, "avatar": "assistant"})
st.rerun()
button_clear = st.button("清空", on_click=clear_all0, key='clear0')

View File

@ -0,0 +1,283 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
"""
import streamlit as st
st.set_page_config(
page_title="Chat",
layout='wide'
)
# 以下密钥信息从控制台获取
appid = " " # 填写控制台中获取的 APPID 信息
api_secret = " " # 填写控制台中获取的 APISecret 信息
api_key =" " # 填写控制台中获取的 APIKey 信息
with st.sidebar:
with st.expander('模型', expanded=True):
API_model = st.radio('选择:', ('讯飞 - 星火大模型 V1.5', '讯飞 - 星火大模型 V2.0', '讯飞 - 星火大模型 V3.0'), key='choose_API_model')
if API_model == '讯飞 - 星火大模型 V1.5':
API_model_0 = '星火大模型 V1.5'
elif API_model == '讯飞 - 星火大模型 V2.0':
API_model_0 = '星火大模型 V2.0'
elif API_model == '讯飞 - 星火大模型 V3.0':
API_model_0 = '星火大模型 V3.0'
st.write('当前模型:'+API_model_0)
with st.expander('参数', expanded=True):
top_k = st.slider('top_k', 1, 6, value=4, step=1)
temperature = st.slider('temperature', 0.01, 1.0, value=0.5, step=0.01)
# 云端环境的服务地址
if API_model == '讯飞 - 星火大模型 V1.5':
domain = "general" # v1.5版本
Spark_url = "ws://spark-api.xf-yun.com/v1.1/chat" # v1.5环境的地址
elif API_model == '讯飞 - 星火大模型 V2.0':
domain = "generalv2" # v2.0版本
Spark_url = "ws://spark-api.xf-yun.com/v2.1/chat" # v2.0环境的地址
elif API_model == '讯飞 - 星火大模型 V3.0':
domain = "generalv3" # v3.0版本
Spark_url = "ws://spark-api.xf-yun.com/v3.1/chat" # v3.0环境的地址
import _thread as thread
import base64
import datetime
import hashlib
import hmac
import json
from urllib.parse import urlparse
import ssl
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import websocket # 使用websocket_client
answer = ""
class Ws_Param(object):
# 初始化
def __init__(self, APPID, APIKey, APISecret, Spark_url):
self.APPID = APPID
self.APIKey = APIKey
self.APISecret = APISecret
self.host = urlparse(Spark_url).netloc
self.path = urlparse(Spark_url).path
self.Spark_url = Spark_url
# 生成url
def create_url(self):
# 生成RFC1123格式的时间戳
now = datetime.now()
date = format_date_time(mktime(now.timetuple()))
# 拼接字符串
signature_origin = "host: " + self.host + "\n"
signature_origin += "date: " + date + "\n"
signature_origin += "GET " + self.path + " HTTP/1.1"
# 进行hmac-sha256进行加密
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
digestmod=hashlib.sha256).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')
authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
# 将请求的鉴权参数组合为字典
v = {
"authorization": authorization,
"date": date,
"host": self.host
}
# 拼接鉴权参数生成url
url = self.Spark_url + '?' + urlencode(v)
# 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释比对相同参数时生成的url与自己代码生成的url是否一致
return url
# 收到websocket错误的处理
def on_error(ws, error):
print("### error:", error)
# 收到websocket关闭的处理
def on_close(ws,one,two):
print(" ")
# 收到websocket连接建立的处理
def on_open(ws):
thread.start_new_thread(run, (ws,))
def run(ws, *args):
data = json.dumps(gen_params(appid=ws.appid, domain= ws.domain,question=ws.question))
ws.send(data)
# 收到websocket消息的处理
def on_message(ws, message):
# print(message)
data = json.loads(message)
code = data['header']['code']
if code != 0:
print(f'请求错误: {code}, {data}')
ws.close()
else:
choices = data["payload"]["choices"]
status = choices["status"]
content = choices["text"][0]["content"]
global answer
answer += content
message_placeholder.markdown(answer)
if status == 2:
ws.close()
def gen_params(appid, domain,question):
"""
通过appid和用户的提问来生成请参数
"""
data = {
"header": {
"app_id": appid,
"uid": "1234"
},
"parameter": {
"chat": {
"domain": domain,
"random_threshold": 0.5,
"temperature": temperature,
"top_k": top_k,
"max_tokens": 4096,
"auditing": "default"
}
},
"payload": {
"message": {
"text": question
}
}
}
return data
def main_chat(appid, api_key, api_secret, Spark_url,domain, question):
wsParam = Ws_Param(appid, api_key, api_secret, Spark_url)
websocket.enableTrace(False)
wsUrl = wsParam.create_url()
ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open)
ws.appid = appid
ws.question = question
ws.domain = domain
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
def getlength(text):
length = 0
for content in text:
temp = content["content"]
leng = len(temp)
length += leng
return length
def checklen(text):
while (getlength(text) > 8000):
del text[0]
return text
def getText(role,content, text):
jsoncon = {}
jsoncon["role"] = role
jsoncon["content"] = content
text.append(jsoncon)
return text
prompt_text = st.chat_input("请在这里输入您的命令")
if API_model == '讯飞 - 星火大模型 V1.5':
if "text" not in st.session_state:
st.session_state.text = []
if "messages" not in st.session_state:
st.session_state.messages = []
def clear_all():
st.session_state.messages = []
st.session_state.text = []
if st.session_state.messages == []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message.get("avatar")):
st.markdown(message["content"])
if prompt_text:
if st.session_state.messages != []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
input_placeholder.markdown(prompt_text)
st.session_state.messages.append({"role": "user", "content": prompt_text, "avatar": "user"})
st.session_state.text = getText("user", prompt_text, st.session_state.text)
question = checklen(st.session_state.text)
main_chat(appid,api_key,api_secret,Spark_url,domain,question)
st.session_state.text = getText("assistant", answer, st.session_state.text)
st.session_state.messages.append({"role": "robot", "content": answer, "avatar": "assistant"})
st.rerun()
button_clear = st.button("清空", on_click=clear_all)
elif API_model == '讯飞 - 星火大模型 V2.0':
if "text2" not in st.session_state:
st.session_state.text2 = []
if "messages2" not in st.session_state:
st.session_state.messages2 = []
def clear_all2():
st.session_state.messages2 = []
st.session_state.text2 = []
if st.session_state.messages2 == []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
for message in st.session_state.messages2:
with st.chat_message(message["role"], avatar=message.get("avatar")):
st.markdown(message["content"])
if prompt_text:
if st.session_state.messages2 != []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
input_placeholder.markdown(prompt_text)
st.session_state.messages2.append({"role": "user", "content": prompt_text, "avatar": "user"})
st.session_state.text2 = getText("user", prompt_text, st.session_state.text2)
question = checklen(st.session_state.text2)
main_chat(appid,api_key,api_secret,Spark_url,domain,question)
st.session_state.text2 = getText("assistant", answer, st.session_state.text2)
st.session_state.messages2.append({"role": "robot", "content": answer, "avatar": "assistant"})
st.rerun()
button_clear = st.button("清空", on_click=clear_all2, key='clear2')
elif API_model == '讯飞 - 星火大模型 V3.0':
if "text3" not in st.session_state:
st.session_state.text3 = []
if "messages3" not in st.session_state:
st.session_state.messages3 = []
def clear_all3():
st.session_state.messages3 = []
st.session_state.text3 = []
if st.session_state.messages3 == []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
for message in st.session_state.messages3:
with st.chat_message(message["role"], avatar=message.get("avatar")):
st.markdown(message["content"])
if prompt_text:
if st.session_state.messages3 != []:
with st.chat_message("user", avatar="user"):
input_placeholder = st.empty()
with st.chat_message("robot", avatar="assistant"):
message_placeholder = st.empty()
input_placeholder.markdown(prompt_text)
st.session_state.messages3.append({"role": "user", "content": prompt_text, "avatar": "user"})
st.session_state.text3 = getText("user", prompt_text, st.session_state.text3)
question = checklen(st.session_state.text3)
main_chat(appid,api_key,api_secret,Spark_url,domain,question)
st.session_state.text3 = getText("assistant", answer, st.session_state.text3)
st.session_state.messages3.append({"role": "robot", "content": answer, "avatar": "assistant"})
st.rerun()
button_clear = st.button("清空", on_click=clear_all3, key='clear3')