""" This code is supported by the website: https://www.guanjihuan.com The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502 """ import streamlit as st st.set_page_config( page_title="Chat", layout='wide' ) @st.cache_resource def load_model_internlm_7B(): # internlm(需要 7G 显存) import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", ) model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, quantization_config=nf4_config) tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, torch_dtype=torch.bfloat16) model = model.eval() return model, tokenizer model_internlm_7B, tokenizer_internlm_7B = load_model_internlm_7B() with st.sidebar: with st.expander('参数', expanded=True): max_length = 409600 top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session') temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session') def reset_parameter(): st.session_state['top_p_session'] = 0.8 st.session_state['temperature_session'] = 0.8 reset_parameter_button = st.button('重置', on_click=reset_parameter) prompt = st.chat_input("在这里输入您的命令") from tools.transformers.interface import GenerationConfig, generate_interactive def prepare_generation_config(): generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature) return generation_config def combine_history(prompt, messages): total_prompt = "" for message in messages: cur_content = message["content"] if message["role"] == "user": cur_prompt = user_prompt.replace("{user}", cur_content) elif message["role"] == "robot": cur_prompt = robot_prompt.replace("{robot}", cur_content) else: raise RuntimeError total_prompt += cur_prompt total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt) return total_prompt user_prompt = "<|User|>:{user}\n" robot_prompt = "<|Bot|>:{robot}\n" cur_query_prompt = "<|User|>:{user}\n<|Bot|>:" generation_config = prepare_generation_config() if "messages_internlm_7B" not in st.session_state: st.session_state.messages_internlm_7B = [] from dataclasses import asdict def chat_response_internlm_7B(prompt): real_prompt = combine_history(prompt, messages = st.session_state.messages_internlm_7B) st.session_state.messages_internlm_7B.append({"role": "user", "content": prompt, "avatar": 'user'}) for cur_response in generate_interactive( model=model_internlm_7B, tokenizer=tokenizer_internlm_7B, prompt=real_prompt, additional_eos_token_id=103028, **asdict(generation_config), ): message_placeholder_internlm_7B.markdown(cur_response + "▌") if stop_button: break message_placeholder_internlm_7B.markdown(cur_response) st.session_state.messages_internlm_7B.append({"role": "robot", "content": cur_response, "avatar": "assistant"}) st.session_state.ai_response.append({"role": "robot", "content": cur_response, "avatar": "assistant"}) return cur_response def clear_all(): st.session_state.messages_internlm_7B = [] st.session_state.ai_response = [] if 'messages_internlm_7B' not in st.session_state: st.session_state.messages_internlm_7B = [] if 'ai_response' not in st.session_state: st.session_state.ai_response = [] for ai_response in st.session_state.ai_response: with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")): st.markdown(ai_response["content"]) prompt_placeholder = st.chat_message("user", avatar='user') with st.chat_message("robot", avatar="assistant"): message_placeholder_internlm_7B = st.empty() if prompt: prompt_placeholder.markdown(prompt) st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'}) stop = st.empty() stop_button = stop.button('停止', key='break_response') chat_response_internlm_7B(prompt) stop.empty() button_clear = st.button("清空", on_click=clear_all, key='clear')