""" This code is supported by the website: https://www.guanjihuan.com The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502 """ import streamlit as st st.set_page_config( page_title="Chat", layout='wide' ) choose_load_model = 0 # 选择加载的模型(Qwen-7B 或 Qwen-14B) if choose_load_model == 0: # Qwen-7B(需要8G显存) @st.cache_resource def load_model_qwen_7B(): from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen-7B-Chat-Int4", device_map="auto", trust_remote_code=True, ).eval() return tokenizer, model tokenizer_qwen_7B, model_qwen_7B = load_model_qwen_7B() elif choose_load_model == 1: # Qwen-14B(需要12G显存) @st.cache_resource def load_model_qwen_14B(): from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen-14B-Chat-Int4", device_map="auto", trust_remote_code=True ).eval() return tokenizer, model tokenizer_qwen_14B, model_qwen_14B = load_model_qwen_14B() with st.sidebar: with st.expander('参数', expanded=True): max_length = 409600 top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session') temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session') def reset_parameter(): st.session_state['top_p_session'] = 0.8 st.session_state['temperature_session'] = 0.8 reset_parameter_button = st.button('重置', on_click=reset_parameter) prompt = st.chat_input("在这里输入您的命令") from transformers.generation import GenerationConfig if choose_load_model == 0: config_qwen_7b = GenerationConfig.from_pretrained( "Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature ) def chat_response_qwen_7B(query): for response in model_qwen_7B.chat_stream(tokenizer_qwen_7B, query, history=st.session_state.history_qwen, generation_config=config_qwen_7b): message_placeholder_qwen.markdown(response) if stop_button: break st.session_state.history_qwen.append((query, response)) st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"}) return response elif choose_load_model == 1: config_qwen_14b = GenerationConfig.from_pretrained( "Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature ) def chat_response_qwen_14B(query): for response in model_qwen_14B.chat_stream(tokenizer_qwen_14B, query, history=st.session_state.history_qwen, generation_config=config_qwen_14b): message_placeholder_qwen.markdown(response) if stop_button: break st.session_state.history_qwen.append((query, response)) st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"}) return response def clear_all(): st.session_state.history_qwen = [] st.session_state.ai_response = [] if 'history_qwen' not in st.session_state: st.session_state.history_qwen = [] if 'ai_response' not in st.session_state: st.session_state.ai_response = [] for ai_response in st.session_state.ai_response: with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")): st.markdown(ai_response["content"]) prompt_placeholder = st.chat_message("user", avatar='user') with st.chat_message("robot", avatar="assistant"): message_placeholder_qwen = st.empty() if prompt: prompt_placeholder.markdown(prompt) st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'}) stop = st.empty() stop_button = stop.button('停止', key='break_response') if choose_load_model == 0: chat_response_qwen_7B(prompt) elif choose_load_model == 1: chat_response_qwen_14B(prompt) stop.empty() button_clear = st.button("清空", on_click=clear_all, key='clear')