109 lines
4.5 KiB
Python
109 lines
4.5 KiB
Python
"""
|
||
This code is supported by the website: https://www.guanjihuan.com
|
||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
|
||
"""
|
||
|
||
import streamlit as st
|
||
st.set_page_config(
|
||
page_title="Chat",
|
||
layout='wide'
|
||
)
|
||
|
||
choose_load_model = 0 # 选择加载的模型(Qwen-7B 或 Qwen-14B)
|
||
|
||
if choose_load_model == 0:
|
||
# Qwen-7B(需要8G显存)
|
||
@st.cache_resource
|
||
def load_model_qwen_7B():
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
"Qwen/Qwen-7B-Chat-Int4",
|
||
device_map="auto",
|
||
trust_remote_code=True,
|
||
).eval()
|
||
return tokenizer, model
|
||
tokenizer_qwen_7B, model_qwen_7B = load_model_qwen_7B()
|
||
|
||
elif choose_load_model == 1:
|
||
# Qwen-14B(需要12G显存)
|
||
@st.cache_resource
|
||
def load_model_qwen_14B():
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
"Qwen/Qwen-14B-Chat-Int4",
|
||
device_map="auto",
|
||
trust_remote_code=True
|
||
).eval()
|
||
return tokenizer, model
|
||
tokenizer_qwen_14B, model_qwen_14B = load_model_qwen_14B()
|
||
|
||
with st.sidebar:
|
||
with st.expander('参数', expanded=True):
|
||
max_length = 409600
|
||
top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
|
||
temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session')
|
||
def reset_parameter():
|
||
st.session_state['top_p_session'] = 0.8
|
||
st.session_state['temperature_session'] = 0.8
|
||
reset_parameter_button = st.button('重置', on_click=reset_parameter)
|
||
|
||
prompt = st.chat_input("在这里输入您的命令")
|
||
|
||
from transformers.generation import GenerationConfig
|
||
|
||
if choose_load_model == 0:
|
||
config_qwen_7b = GenerationConfig.from_pretrained(
|
||
"Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature
|
||
)
|
||
def chat_response_qwen_7B(query):
|
||
for response in model_qwen_7B.chat_stream(tokenizer_qwen_7B, query, history=st.session_state.history_qwen, generation_config=config_qwen_7b):
|
||
message_placeholder_qwen.markdown(response)
|
||
if stop_button:
|
||
break
|
||
st.session_state.history_qwen.append((query, response))
|
||
st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
|
||
return response
|
||
|
||
elif choose_load_model == 1:
|
||
config_qwen_14b = GenerationConfig.from_pretrained(
|
||
"Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature
|
||
)
|
||
def chat_response_qwen_14B(query):
|
||
for response in model_qwen_14B.chat_stream(tokenizer_qwen_14B, query, history=st.session_state.history_qwen, generation_config=config_qwen_14b):
|
||
message_placeholder_qwen.markdown(response)
|
||
if stop_button:
|
||
break
|
||
st.session_state.history_qwen.append((query, response))
|
||
st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
|
||
return response
|
||
|
||
def clear_all():
|
||
st.session_state.history_qwen = []
|
||
st.session_state.ai_response = []
|
||
|
||
if 'history_qwen' not in st.session_state:
|
||
st.session_state.history_qwen = []
|
||
if 'ai_response' not in st.session_state:
|
||
st.session_state.ai_response = []
|
||
|
||
for ai_response in st.session_state.ai_response:
|
||
with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
|
||
st.markdown(ai_response["content"])
|
||
|
||
prompt_placeholder = st.chat_message("user", avatar='user')
|
||
with st.chat_message("robot", avatar="assistant"):
|
||
message_placeholder_qwen = st.empty()
|
||
|
||
if prompt:
|
||
prompt_placeholder.markdown(prompt)
|
||
st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
|
||
stop = st.empty()
|
||
stop_button = stop.button('停止', key='break_response')
|
||
if choose_load_model == 0:
|
||
chat_response_qwen_7B(prompt)
|
||
elif choose_load_model == 1:
|
||
chat_response_qwen_14B(prompt)
|
||
stop.empty()
|
||
button_clear = st.button("清空", on_click=clear_all, key='clear') |