update
This commit is contained in:
@@ -0,0 +1,164 @@
|
||||
import argparse
|
||||
import json
|
||||
import os.path as osp
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import sentencepiece as spm
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def process(dataset_path, sp_model):
|
||||
"""Process data sample from input dataset
|
||||
|
||||
Args:
|
||||
dataset_path (str): Path of dataset json file.
|
||||
sp_model (str): Path of tokenizer.
|
||||
|
||||
Yields:
|
||||
tuple: dumped processed data sample and length of tokens.
|
||||
"""
|
||||
|
||||
dataset = json.load(open(dataset_path))
|
||||
|
||||
for data in dataset:
|
||||
yield tokenize(get_chat_format_data(data), sp_model)
|
||||
|
||||
|
||||
def get_chat_format_data(ori_data):
|
||||
"""Format original data
|
||||
|
||||
Args:
|
||||
ori_data (dict): input data sample.
|
||||
|
||||
Returns:
|
||||
dict: data sample with chat format.
|
||||
"""
|
||||
input_str = ori_data["input"]
|
||||
instruction_str = ori_data["instruction"]
|
||||
output_str = ori_data["output"]
|
||||
data = dict()
|
||||
if input_str != "":
|
||||
data["user"] = f"<|User|>:{instruction_str}\n{input_str}"
|
||||
else:
|
||||
data["user"] = f"<|User|>:{instruction_str}"
|
||||
data["bot"] = f"<|Bot|>:{output_str}"
|
||||
return data
|
||||
|
||||
|
||||
def tokenize(sample, sp_model):
|
||||
"""Tokenize input dataset
|
||||
|
||||
Args:
|
||||
sample (dict): Input data sample.
|
||||
sp_model (str): Path of tokenizer.
|
||||
|
||||
Returns:
|
||||
tuple: dumped processed data sample and length of tokens.
|
||||
"""
|
||||
special_tokens_map = {"<eoh>": 103167, "<eoa>": 103166, "nl_id": 13}
|
||||
token_ids = [sp_model.bos_id()]
|
||||
human_s = sample["user"]
|
||||
ass_s = sample["bot"]
|
||||
|
||||
human_ids = sp_model.encode(human_s) + [special_tokens_map["<eoh>"], special_tokens_map["nl_id"]]
|
||||
human_ids_ignore = [-token_id for token_id in human_ids]
|
||||
|
||||
ass_template_ids = sp_model.encode("<|Bot|>:")
|
||||
ass_template_ids_ignore = [-token_ids for token_ids in ass_template_ids]
|
||||
ass_ids = (
|
||||
ass_template_ids_ignore
|
||||
+ sp_model.encode(ass_s[8:])
|
||||
+ [special_tokens_map["<eoa>"], special_tokens_map["nl_id"]]
|
||||
)
|
||||
|
||||
token_ids += human_ids_ignore + ass_ids
|
||||
if len(token_ids) > 2047:
|
||||
token_ids = token_ids[:2047]
|
||||
token_ids += [sp_model.eos_id()]
|
||||
line = str.encode(json.dumps({"tokens": token_ids}) + "\n")
|
||||
return line, len(token_ids)
|
||||
|
||||
|
||||
def dump_bin_meta_bin(samples, path, split_ratio=0.1):
|
||||
"""Dump processed dataset
|
||||
|
||||
Args:
|
||||
samples (dict): Input data sample.
|
||||
path (str): Path for output dataset.
|
||||
split_ratio (float): Ratio for validation dataset splitting.
|
||||
Default to: 0.1.
|
||||
|
||||
Returns:
|
||||
tuple: number of train/valid tokens of processed dataset,
|
||||
number of train/valid samples of processed dataset.
|
||||
"""
|
||||
|
||||
train_path = osp.join(path, "train/en/")
|
||||
valid_path = osp.join(path, "valid/en/")
|
||||
train_dir = Path(train_path)
|
||||
valid_dir = Path(valid_path)
|
||||
train_dir.mkdir(exist_ok=True, parents=True)
|
||||
valid_dir.mkdir(exist_ok=True, parents=True)
|
||||
train_f = open(train_dir.joinpath("dataset.bin"), "wb")
|
||||
valid_f = open(valid_dir.joinpath("dataset.bin"), "wb")
|
||||
|
||||
train_tokens = 0
|
||||
valid_tokens = 0
|
||||
last_train_position = 0
|
||||
last_valid_position = 0
|
||||
train_samples = 0
|
||||
valid_samples = 0
|
||||
train_meta = []
|
||||
valid_meta = []
|
||||
|
||||
sample_length = len(samples)
|
||||
np.random.seed(0)
|
||||
valid_indices = np.random.choice(range(sample_length), int(sample_length * split_ratio)).tolist()
|
||||
|
||||
count = -1
|
||||
for line, token_num in samples:
|
||||
count += 1
|
||||
if count in valid_indices:
|
||||
valid_tokens += token_num
|
||||
valid_f.write(line)
|
||||
valid_meta.append((last_valid_position, token_num))
|
||||
last_valid_position += len(line)
|
||||
valid_samples += 1
|
||||
else:
|
||||
train_tokens += token_num
|
||||
train_f.write(line)
|
||||
train_meta.append((last_train_position, token_num))
|
||||
last_train_position += len(line)
|
||||
train_samples += 1
|
||||
|
||||
train_f.close()
|
||||
valid_f.close()
|
||||
np.save(open(train_dir.joinpath("dataset.bin.meta"), "wb"), train_meta)
|
||||
np.save(open(valid_dir.joinpath("dataset.bin.meta"), "wb"), valid_meta)
|
||||
|
||||
return train_tokens, valid_tokens, train_samples, valid_samples
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("dataset_path", type=str, help="path of dataset json file")
|
||||
parser.add_argument("output_path", type=str, help="path of processed dataset")
|
||||
parser.add_argument("tokenizer_path", type=str, help="path of tokenizer")
|
||||
parser.add_argument("--split_ratio", type=float, default=0.1, help="ratio for validation dataset splitting")
|
||||
|
||||
args = parser.parse_args()
|
||||
sp_model = spm.SentencePieceProcessor(model_file=args.tokenizer_path)
|
||||
split_ratio = args.split_ratio
|
||||
samples = []
|
||||
|
||||
dataset = process(args.dataset_path, sp_model)
|
||||
for sample in tqdm(dataset):
|
||||
samples.append(sample)
|
||||
|
||||
train_tokens, valid_tokens, train_samples, valid_samples = dump_bin_meta_bin(
|
||||
samples, args.output_path, args.split_ratio
|
||||
)
|
||||
print(f"number of train dataset: {train_samples}, number of train dataset token: {train_tokens}")
|
||||
print(f"number of validation dataset: {valid_samples}, number of validation dataset token: {valid_tokens}")
|
Reference in New Issue
Block a user