From 249d292bd8bcbbc145b986a0b5c9bf5abc24db80 Mon Sep 17 00:00:00 2001 From: guanjihuan Date: Sat, 8 Mar 2025 20:35:02 +0800 Subject: [PATCH] Update matrix_running_time_for_different_num_of_cpu_cores.py --- ...ing_time_for_different_num_of_cpu_cores.py | 30 +++++++++++-------- 1 file changed, 18 insertions(+), 12 deletions(-) diff --git a/2025.03.08_matrix_running_time_for_different_num_of_cpu_cores/matrix_running_time_for_different_num_of_cpu_cores.py b/2025.03.08_matrix_running_time_for_different_num_of_cpu_cores/matrix_running_time_for_different_num_of_cpu_cores.py index 31381eb..e8bc080 100644 --- a/2025.03.08_matrix_running_time_for_different_num_of_cpu_cores/matrix_running_time_for_different_num_of_cpu_cores.py +++ b/2025.03.08_matrix_running_time_for_different_num_of_cpu_cores/matrix_running_time_for_different_num_of_cpu_cores.py @@ -12,36 +12,42 @@ B = np.random.rand(n, n) # 矩阵行列式 start_time = time.time() -det_A = np.linalg.det(A) -det_time = time.time() - start_time +for _ in range(10): + det_A = np.linalg.det(A) +det_time = (time.time() - start_time)/10 print(f"矩阵行列式时间: {det_time:.3f} 秒") # 矩阵乘法 start_time = time.time() -C = np.dot(A, B) -multiply_time = time.time() - start_time +for _ in range(10): + C = np.dot(A, B) +multiply_time = (time.time() - start_time)/10 print(f"矩阵乘法时间: {multiply_time:.3f} 秒") # 矩阵求逆 start_time = time.time() -inv_A = np.linalg.inv(A) -inv_time = time.time() - start_time +for _ in range(10): + inv_A = np.linalg.inv(A) +inv_time = (time.time() - start_time)/10 print(f"矩阵求逆时间: {inv_time:.3f} 秒") # 矩阵的秩 start_time = time.time() -rank_A = np.linalg.matrix_rank(A) -rank_time = time.time() - start_time +for _ in range(10): + rank_A = np.linalg.matrix_rank(A) +rank_time = (time.time() - start_time)/10 print(f"矩阵的秩时间: {rank_time:.3f} 秒") # 矩阵的特征值 start_time = time.time() -eigenvalues_A = np.linalg.eigvals(A) -eigen_time = time.time() - start_time +for _ in range(10): + eigenvalues_A = np.linalg.eigvals(A) +eigen_time = (time.time() - start_time)/10 print(f"矩阵特征值时间: {eigen_time:.3f} 秒") # 矩阵的特征值和特征向量 start_time = time.time() -eigenvalues_A, eigenvector_A = np.linalg.eig(A) -eigen_time = time.time() - start_time +for _ in range(10): + eigenvalues_A, eigenvector_A = np.linalg.eig(A) +eigen_time = (time.time() - start_time)/10 print(f"矩阵特征值和特征向量时间: {eigen_time:.3f} 秒") \ No newline at end of file