update
This commit is contained in:
parent
c2148b3302
commit
337d3de874
@ -10,7 +10,7 @@ import cmath
|
||||
import time
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82*sqrt(3)/2, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
def hamiltonian(k1, k2, t1=2.82*sqrt(3)/2, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
|
@ -1,114 +1,114 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/8536
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from math import *
|
||||
import cmath
|
||||
import time
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82*sqrt(3)/2, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h[0, 1] = h[1, 0].conj()
|
||||
return h
|
||||
|
||||
|
||||
def main():
|
||||
start_time = time.time()
|
||||
n = 2000 # 取点密度
|
||||
delta = 1e-9 # 求导的偏离量
|
||||
for band in range(2):
|
||||
F_all = [] # 贝里曲率
|
||||
for kx in np.linspace(-2*pi, 2*pi, n):
|
||||
for ky in [0]: # 这里只考虑ky=0对称轴上的情况 # np.linspace(-pi, pi, n):
|
||||
H = hamiltonian(kx, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H)
|
||||
vector = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 价带波函数
|
||||
# print(np.argsort(np.real(eigenvalue))[0]) # 排序索引(从小到大)
|
||||
# print(eigenvalue) # 排序前的本征值
|
||||
# print(np.sort(np.real(eigenvalue))) # 排序后的本征值(从小到大)
|
||||
|
||||
H_delta_kx = hamiltonian(kx+delta, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx)
|
||||
vector_delta_kx = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离kx的波函数
|
||||
# vector_delta_kx = find_vector_with_the_same_gauge(vector_delta_kx, vector) # 如果波函数不连续需要使用这个
|
||||
|
||||
H_delta_ky = hamiltonian(kx, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_ky)
|
||||
vector_delta_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离ky的波函数
|
||||
# vector_delta_ky = find_vector_with_the_same_gauge(vector_delta_ky, vector) # 如果波函数不连续需要使用这个
|
||||
|
||||
H_delta_kx_ky = hamiltonian(kx+delta, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx_ky)
|
||||
vector_delta_kx_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离kx和ky的波函数
|
||||
# vector_delta_kx_ky = find_vector_with_the_same_gauge(vector_delta_kx_ky, vector) # 如果波函数不连续需要使用这个
|
||||
|
||||
# 价带的波函数的贝里联络(berry connection) # 求导后内积
|
||||
A_x = np.dot(vector.transpose().conj(), (vector_delta_kx-vector)/delta) # 贝里联络Ax(x分量)
|
||||
A_y = np.dot(vector.transpose().conj(), (vector_delta_ky-vector)/delta) # 贝里联络Ay(y分量)
|
||||
|
||||
A_x_delta_ky = np.dot(vector_delta_ky.transpose().conj(), (vector_delta_kx_ky-vector_delta_ky)/delta) # 略偏离ky的贝里联络Ax
|
||||
A_y_delta_kx = np.dot(vector_delta_kx.transpose().conj(), (vector_delta_kx_ky-vector_delta_kx)/delta) # 略偏离kx的贝里联络Ay
|
||||
|
||||
# 贝里曲率(berry curvature)
|
||||
F = ((A_y_delta_kx-A_y)/delta-(A_x_delta_ky-A_x)/delta)*1j
|
||||
# print(F)
|
||||
F_all = np.append(F_all,[F], axis=0)
|
||||
plt.plot(np.linspace(-2*pi, 2*pi, n)/pi, np.real(F_all))
|
||||
plt.xlabel('k_x (pi)')
|
||||
plt.ylabel('Berry curvature')
|
||||
if band==0:
|
||||
plt.title('Valence Band')
|
||||
else:
|
||||
plt.title('Conductance Band')
|
||||
plt.show()
|
||||
end_time = time.time()
|
||||
print('运行时间(min)=', (end_time-start_time)/60)
|
||||
|
||||
|
||||
def find_vector_with_the_same_gauge(vector_1, vector_0):
|
||||
# 寻找近似的同一的规范
|
||||
phase_1_pre = 0
|
||||
phase_2_pre = pi
|
||||
n_test = 10001
|
||||
for i0 in range(n_test):
|
||||
test_1 = np.sum(np.abs(vector_1*cmath.exp(1j*phase_1_pre) - vector_0))
|
||||
test_2 = np.sum(np.abs(vector_1*cmath.exp(1j*phase_2_pre) - vector_0))
|
||||
if test_1 < 1e-9:
|
||||
phase = phase_1_pre
|
||||
# print('Done with i0=', i0)
|
||||
break
|
||||
if i0 == n_test-1:
|
||||
phase = phase_1_pre
|
||||
print('Gauge Not Found with i0=', i0)
|
||||
if test_1 < test_2:
|
||||
if i0 == 0:
|
||||
phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2
|
||||
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
||||
else:
|
||||
phase_1 = phase_1_pre
|
||||
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
||||
else:
|
||||
if i0 == 0:
|
||||
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
||||
phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2
|
||||
else:
|
||||
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
||||
phase_2 = phase_2_pre
|
||||
phase_1_pre = phase_1
|
||||
phase_2_pre = phase_2
|
||||
|
||||
vector_1 = vector_1*cmath.exp(1j*phase)
|
||||
# print('二分查找找到的规范=', phase)
|
||||
return vector_1
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/8536
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from math import *
|
||||
import cmath
|
||||
import time
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82*sqrt(3)/2, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h[0, 1] = h[1, 0].conj()
|
||||
return h
|
||||
|
||||
|
||||
def main():
|
||||
start_time = time.time()
|
||||
n = 2000 # 取点密度
|
||||
delta = 1e-9 # 求导的偏离量
|
||||
for band in range(2):
|
||||
F_all = [] # 贝里曲率
|
||||
for kx in np.linspace(-2*pi, 2*pi, n):
|
||||
for ky in [0]: # 这里只考虑ky=0对称轴上的情况 # np.linspace(-pi, pi, n):
|
||||
H = hamiltonian(kx, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H)
|
||||
vector = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 价带波函数
|
||||
# print(np.argsort(np.real(eigenvalue))[0]) # 排序索引(从小到大)
|
||||
# print(eigenvalue) # 排序前的本征值
|
||||
# print(np.sort(np.real(eigenvalue))) # 排序后的本征值(从小到大)
|
||||
|
||||
H_delta_kx = hamiltonian(kx+delta, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx)
|
||||
vector_delta_kx = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离kx的波函数
|
||||
# vector_delta_kx = find_vector_with_the_same_gauge(vector_delta_kx, vector) # 如果波函数不连续需要使用这个
|
||||
|
||||
H_delta_ky = hamiltonian(kx, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_ky)
|
||||
vector_delta_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离ky的波函数
|
||||
# vector_delta_ky = find_vector_with_the_same_gauge(vector_delta_ky, vector) # 如果波函数不连续需要使用这个
|
||||
|
||||
H_delta_kx_ky = hamiltonian(kx+delta, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx_ky)
|
||||
vector_delta_kx_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离kx和ky的波函数
|
||||
# vector_delta_kx_ky = find_vector_with_the_same_gauge(vector_delta_kx_ky, vector) # 如果波函数不连续需要使用这个
|
||||
|
||||
# 价带的波函数的贝里联络(berry connection) # 求导后内积
|
||||
A_x = np.dot(vector.transpose().conj(), (vector_delta_kx-vector)/delta) # 贝里联络Ax(x分量)
|
||||
A_y = np.dot(vector.transpose().conj(), (vector_delta_ky-vector)/delta) # 贝里联络Ay(y分量)
|
||||
|
||||
A_x_delta_ky = np.dot(vector_delta_ky.transpose().conj(), (vector_delta_kx_ky-vector_delta_ky)/delta) # 略偏离ky的贝里联络Ax
|
||||
A_y_delta_kx = np.dot(vector_delta_kx.transpose().conj(), (vector_delta_kx_ky-vector_delta_kx)/delta) # 略偏离kx的贝里联络Ay
|
||||
|
||||
# 贝里曲率(berry curvature)
|
||||
F = ((A_y_delta_kx-A_y)/delta-(A_x_delta_ky-A_x)/delta)*1j
|
||||
# print(F)
|
||||
F_all = np.append(F_all,[F], axis=0)
|
||||
plt.plot(np.linspace(-2*pi, 2*pi, n)/pi, np.real(F_all))
|
||||
plt.xlabel('k_x (pi)')
|
||||
plt.ylabel('Berry curvature')
|
||||
if band==0:
|
||||
plt.title('Valence Band')
|
||||
else:
|
||||
plt.title('Conductance Band')
|
||||
plt.show()
|
||||
end_time = time.time()
|
||||
print('运行时间(min)=', (end_time-start_time)/60)
|
||||
|
||||
|
||||
def find_vector_with_the_same_gauge(vector_1, vector_0):
|
||||
# 寻找近似的同一的规范
|
||||
phase_1_pre = 0
|
||||
phase_2_pre = pi
|
||||
n_test = 10001
|
||||
for i0 in range(n_test):
|
||||
test_1 = np.sum(np.abs(vector_1*cmath.exp(1j*phase_1_pre) - vector_0))
|
||||
test_2 = np.sum(np.abs(vector_1*cmath.exp(1j*phase_2_pre) - vector_0))
|
||||
if test_1 < 1e-9:
|
||||
phase = phase_1_pre
|
||||
# print('Done with i0=', i0)
|
||||
break
|
||||
if i0 == n_test-1:
|
||||
phase = phase_1_pre
|
||||
print('Gauge Not Found with i0=', i0)
|
||||
if test_1 < test_2:
|
||||
if i0 == 0:
|
||||
phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2
|
||||
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
||||
else:
|
||||
phase_1 = phase_1_pre
|
||||
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
||||
else:
|
||||
if i0 == 0:
|
||||
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
||||
phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2
|
||||
else:
|
||||
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
||||
phase_2 = phase_2_pre
|
||||
phase_1_pre = phase_1
|
||||
phase_2_pre = phase_2
|
||||
|
||||
vector_1 = vector_1*cmath.exp(1j*phase)
|
||||
# print('二分查找找到的规范=', phase)
|
||||
return vector_1
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,55 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/20869
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from math import *
|
||||
import cmath
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82*sqrt(3)/2, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h[0, 1] = h[1, 0].conj()
|
||||
return h
|
||||
|
||||
|
||||
def main():
|
||||
n = 2000 # 取点密度
|
||||
delta = 1e-9 # 求导的偏离量
|
||||
for band in range(2):
|
||||
F_all = [] # 贝里曲率
|
||||
for kx in np.linspace(-2*pi, 2*pi, n):
|
||||
for ky in [0]: # 这里只考虑ky=0对称轴上的情况
|
||||
H = hamiltonian(kx, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H)
|
||||
if band==0:
|
||||
vector_0 = eigenvector[:, np.argsort(np.real(eigenvalue))[0]]
|
||||
vector_1 = eigenvector[:, np.argsort(np.real(eigenvalue))[1]]
|
||||
elif band==1:
|
||||
vector_0 = eigenvector[:, np.argsort(np.real(eigenvalue))[1]]
|
||||
vector_1 = eigenvector[:, np.argsort(np.real(eigenvalue))[0]]
|
||||
eigenvalue = np.sort(np.real(eigenvalue))
|
||||
|
||||
H_delta_kx = hamiltonian(kx+delta, ky)-hamiltonian(kx, ky)
|
||||
H_delta_ky = hamiltonian(kx, ky+delta)-hamiltonian(kx, ky)
|
||||
|
||||
berry_curvature = 1j*(np.dot(np.dot(np.dot(np.dot(np.dot(vector_0.transpose().conj(), H_delta_kx/delta), vector_1), vector_1.transpose().conj()), H_delta_ky/delta), vector_0)- np.dot(np.dot(np.dot(np.dot(np.dot(vector_0.transpose().conj(), H_delta_ky/delta), vector_1), vector_1.transpose().conj()), H_delta_kx/delta), vector_0))/(eigenvalue[0]-eigenvalue[1])**2
|
||||
|
||||
F_all = np.append(F_all,[berry_curvature], axis=0)
|
||||
plt.plot(np.linspace(-2*pi, 2*pi, n)/pi, np.real(F_all))
|
||||
plt.xlabel('k_x (pi)')
|
||||
plt.ylabel('Berry curvature')
|
||||
if band==0:
|
||||
plt.title('Valence Band')
|
||||
else:
|
||||
plt.title('Conductance Band')
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,63 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/20869
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from math import *
|
||||
import cmath
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82*sqrt(3)/2, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h[0, 1] = h[1, 0].conj()
|
||||
return h
|
||||
|
||||
|
||||
def main():
|
||||
n = 2000 # 取点密度
|
||||
delta = 4*pi/n # 求导的偏离量
|
||||
for band in range(2):
|
||||
F_all = [] # 贝里曲率
|
||||
for kx in np.linspace(-2*pi, 2*pi, n):
|
||||
for ky in [0]: # 这里只考虑ky=0对称轴上的情况
|
||||
H = hamiltonian(kx, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H)
|
||||
vector = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 价带波函数
|
||||
|
||||
H_delta_kx = hamiltonian(kx+delta, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx)
|
||||
vector_delta_kx = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离kx的波函数
|
||||
|
||||
H_delta_ky = hamiltonian(kx, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_ky)
|
||||
vector_delta_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离ky的波函数
|
||||
|
||||
H_delta_kx_ky = hamiltonian(kx+delta, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx_ky)
|
||||
vector_delta_kx_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[band]] # 略偏离kx和ky的波函数
|
||||
|
||||
Ux = np.dot(np.conj(vector), vector_delta_kx)/abs(np.dot(np.conj(vector), vector_delta_kx))
|
||||
Uy = np.dot(np.conj(vector), vector_delta_ky)/abs(np.dot(np.conj(vector), vector_delta_ky))
|
||||
Ux_y = np.dot(np.conj(vector_delta_ky), vector_delta_kx_ky)/abs(np.dot(np.conj(vector_delta_ky), vector_delta_kx_ky))
|
||||
Uy_x = np.dot(np.conj(vector_delta_kx), vector_delta_kx_ky)/abs(np.dot(np.conj(vector_delta_kx), vector_delta_kx_ky))
|
||||
|
||||
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))/delta/delta*1j
|
||||
|
||||
F_all = np.append(F_all,[F], axis=0)
|
||||
plt.plot(np.linspace(-2*pi, 2*pi, n)/pi, np.real(F_all))
|
||||
plt.xlabel('k_x (pi)')
|
||||
plt.ylabel('Berry curvature')
|
||||
if band==0:
|
||||
plt.title('Valence Band')
|
||||
else:
|
||||
plt.title('Conductance Band')
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user