update
This commit is contained in:
2
2025.11.03_langchain/.env
Normal file
2
2025.11.03_langchain/.env
Normal file
@@ -0,0 +1,2 @@
|
||||
OPENAI_API_KEY=xxx
|
||||
DASHSCOPE_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
|
||||
34
2025.11.03_langchain/langchain_example.py
Normal file
34
2025.11.03_langchain/langchain_example.py
Normal file
@@ -0,0 +1,34 @@
|
||||
import langchain_openai
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
import dotenv
|
||||
import os
|
||||
|
||||
# 加载环境变量(包含API密钥)
|
||||
dotenv.load_dotenv()
|
||||
|
||||
# 创建聊天模型
|
||||
llm = langchain_openai.ChatOpenAI(
|
||||
api_key=os.getenv("OPENAI_API_KEY"), # 从环境变量获取 API 密钥
|
||||
base_url=os.getenv("DASHSCOPE_BASE_URL"), # 指定 API 端点
|
||||
model="qwen-plus", # 使用通义千问 Plus 模型
|
||||
temperature=0.7, # 控制回复的随机性(0-1,越高越有创意)
|
||||
streaming=True, # 启用流式模式
|
||||
)
|
||||
|
||||
# 创建简单的提示词模板
|
||||
prompt = ChatPromptTemplate.from_messages([
|
||||
("system", "你是一个友好的聊天助手。"), # 系统角色设定
|
||||
("human", "{question}") # 用户输入占位符
|
||||
])
|
||||
|
||||
# 创建处理链
|
||||
chain = prompt | llm # 使用管道操作符连接组件
|
||||
|
||||
# 使用 stream() 实现流式输出
|
||||
for chunk in chain.stream({"question": "你好"}):
|
||||
print(chunk.content, end="", flush=True)
|
||||
print() # 换行
|
||||
|
||||
# # 非流式输出
|
||||
# response = chain.invoke({"question": "你好"})
|
||||
# print(response.content)
|
||||
61
2025.11.03_langchain/langchain_example_with_memory.py
Normal file
61
2025.11.03_langchain/langchain_example_with_memory.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.runnables.history import RunnableWithMessageHistory
|
||||
from langchain_community.chat_message_histories import ChatMessageHistory
|
||||
|
||||
# 加载 .env 中的 API 密钥等配置
|
||||
load_dotenv()
|
||||
|
||||
# 初始化大模型
|
||||
llm = ChatOpenAI(
|
||||
api_key=os.getenv("OPENAI_API_KEY"),
|
||||
base_url=os.getenv("DASHSCOPE_BASE_URL"),
|
||||
model="qwen-plus",
|
||||
temperature=0.7
|
||||
)
|
||||
|
||||
# 定义带历史记录的提示模板
|
||||
prompt = ChatPromptTemplate.from_messages([
|
||||
("system", "你是一个乐于助人的助手。"),
|
||||
MessagesPlaceholder("history"), # 历史消息占位符
|
||||
("human", "{input}") # 当前用户输入
|
||||
])
|
||||
|
||||
# 创建基础链
|
||||
chain = prompt | llm
|
||||
|
||||
# 内存存储:用字典模拟会话历史(仅用于演示)
|
||||
store = {}
|
||||
|
||||
def get_session_history(session_id: str):
|
||||
if session_id not in store:
|
||||
store[session_id] = ChatMessageHistory()
|
||||
return store[session_id]
|
||||
|
||||
# 包装成带记忆的链
|
||||
chatbot = RunnableWithMessageHistory(
|
||||
chain,
|
||||
get_session_history,
|
||||
input_messages_key="input",
|
||||
history_messages_key="history",
|
||||
)
|
||||
|
||||
def chat_with_agent(input_message, session_id):
|
||||
print(f"用户: {input_message}")
|
||||
print("助手: ", end="", flush=True)
|
||||
for chunk in chatbot.stream(
|
||||
{"input": input_message},
|
||||
config={"configurable": {"session_id": session_id}} # 多轮对话(使用同一个 session_id)
|
||||
):
|
||||
print(chunk.content, end="", flush=True)
|
||||
print("\n\n---\n")
|
||||
|
||||
chat_with_agent(input_message='一句话解释下人工智能。', session_id="user_001")
|
||||
|
||||
chat_with_agent(input_message='我们都聊了什么?', session_id="user_001")
|
||||
|
||||
chat_with_agent(input_message='我们都聊了什么?', session_id="user_002")
|
||||
|
||||
chat_with_agent(input_message='我们都聊了什么?', session_id="user_001")
|
||||
Reference in New Issue
Block a user