update
This commit is contained in:
		| @@ -0,0 +1,3 @@ | ||||
| #ifndef EIGEN_KLUSUPPORT_MODULE_H | ||||
| #error "Please include Eigen/KLUSupport instead of including headers inside the src directory directly." | ||||
| #endif | ||||
| @@ -0,0 +1,339 @@ | ||||
| // This file is part of Eigen, a lightweight C++ template library | ||||
| // for linear algebra. | ||||
| // | ||||
| // Copyright (C) 2017 Kyle Macfarlan <kyle.macfarlan@gmail.com> | ||||
| // | ||||
| // This Source Code Form is subject to the terms of the Mozilla | ||||
| // Public License v. 2.0. If a copy of the MPL was not distributed | ||||
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | ||||
|  | ||||
| #ifndef EIGEN_KLUSUPPORT_H | ||||
| #define EIGEN_KLUSUPPORT_H | ||||
|  | ||||
| // IWYU pragma: private | ||||
| #include "./InternalHeaderCheck.h" | ||||
|  | ||||
| namespace Eigen { | ||||
|  | ||||
| /* TODO extract L, extract U, compute det, etc... */ | ||||
|  | ||||
| /** \ingroup KLUSupport_Module | ||||
|  * \brief A sparse LU factorization and solver based on KLU | ||||
|  * | ||||
|  * This class allows to solve for A.X = B sparse linear problems via a LU factorization | ||||
|  * using the KLU library. The sparse matrix A must be squared and full rank. | ||||
|  * The vectors or matrices X and B can be either dense or sparse. | ||||
|  * | ||||
|  * \warning The input matrix A should be in a \b compressed and \b column-major form. | ||||
|  * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. | ||||
|  * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | ||||
|  * | ||||
|  * \implsparsesolverconcept | ||||
|  * | ||||
|  * \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU | ||||
|  */ | ||||
|  | ||||
| inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], | ||||
|                      klu_common *Common, double) { | ||||
|   return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, | ||||
|                    Common); | ||||
| } | ||||
|  | ||||
| inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[], | ||||
|                      klu_common *Common, std::complex<double>) { | ||||
|   return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), | ||||
|                      &numext::real_ref(B[0]), Common); | ||||
| } | ||||
|  | ||||
| inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], | ||||
|                       klu_common *Common, double) { | ||||
|   return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, | ||||
|                     Common); | ||||
| } | ||||
|  | ||||
| inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[], | ||||
|                       klu_common *Common, std::complex<double>) { | ||||
|   return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), | ||||
|                       &numext::real_ref(B[0]), 0, Common); | ||||
| } | ||||
|  | ||||
| inline klu_numeric *klu_factor(int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double) { | ||||
|   return klu_factor(Ap, Ai, Ax, Symbolic, Common); | ||||
| } | ||||
|  | ||||
| inline klu_numeric *klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic, | ||||
|                                klu_common *Common, std::complex<double>) { | ||||
|   return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common); | ||||
| } | ||||
|  | ||||
| template <typename MatrixType_> | ||||
| class KLU : public SparseSolverBase<KLU<MatrixType_> > { | ||||
|  protected: | ||||
|   typedef SparseSolverBase<KLU<MatrixType_> > Base; | ||||
|   using Base::m_isInitialized; | ||||
|  | ||||
|  public: | ||||
|   using Base::_solve_impl; | ||||
|   typedef MatrixType_ MatrixType; | ||||
|   typedef typename MatrixType::Scalar Scalar; | ||||
|   typedef typename MatrixType::RealScalar RealScalar; | ||||
|   typedef typename MatrixType::StorageIndex StorageIndex; | ||||
|   typedef Matrix<Scalar, Dynamic, 1> Vector; | ||||
|   typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | ||||
|   typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | ||||
|   typedef SparseMatrix<Scalar> LUMatrixType; | ||||
|   typedef SparseMatrix<Scalar, ColMajor, int> KLUMatrixType; | ||||
|   typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef; | ||||
|   enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | ||||
|  | ||||
|  public: | ||||
|   KLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); } | ||||
|  | ||||
|   template <typename InputMatrixType> | ||||
|   explicit KLU(const InputMatrixType &matrix) : mp_matrix(matrix) { | ||||
|     init(); | ||||
|     compute(matrix); | ||||
|   } | ||||
|  | ||||
|   ~KLU() { | ||||
|     if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); | ||||
|     if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | ||||
|   } | ||||
|  | ||||
|   constexpr Index rows() const noexcept { return mp_matrix.rows(); } | ||||
|   constexpr Index cols() const noexcept { return mp_matrix.cols(); } | ||||
|  | ||||
|   /** \brief Reports whether previous computation was successful. | ||||
|    * | ||||
|    * \returns \c Success if computation was successful, | ||||
|    *          \c NumericalIssue if the matrix.appears to be negative. | ||||
|    */ | ||||
|   ComputationInfo info() const { | ||||
|     eigen_assert(m_isInitialized && "Decomposition is not initialized."); | ||||
|     return m_info; | ||||
|   } | ||||
| #if 0  // not implemented yet | ||||
|     inline const LUMatrixType& matrixL() const | ||||
|     { | ||||
|       if (m_extractedDataAreDirty) extractData(); | ||||
|       return m_l; | ||||
|     } | ||||
|  | ||||
|     inline const LUMatrixType& matrixU() const | ||||
|     { | ||||
|       if (m_extractedDataAreDirty) extractData(); | ||||
|       return m_u; | ||||
|     } | ||||
|  | ||||
|     inline const IntColVectorType& permutationP() const | ||||
|     { | ||||
|       if (m_extractedDataAreDirty) extractData(); | ||||
|       return m_p; | ||||
|     } | ||||
|  | ||||
|     inline const IntRowVectorType& permutationQ() const | ||||
|     { | ||||
|       if (m_extractedDataAreDirty) extractData(); | ||||
|       return m_q; | ||||
|     } | ||||
| #endif | ||||
|   /** Computes the sparse Cholesky decomposition of \a matrix | ||||
|    *  Note that the matrix should be column-major, and in compressed format for best performance. | ||||
|    *  \sa SparseMatrix::makeCompressed(). | ||||
|    */ | ||||
|   template <typename InputMatrixType> | ||||
|   void compute(const InputMatrixType &matrix) { | ||||
|     if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); | ||||
|     if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | ||||
|     grab(matrix.derived()); | ||||
|     analyzePattern_impl(); | ||||
|     factorize_impl(); | ||||
|   } | ||||
|  | ||||
|   /** Performs a symbolic decomposition on the sparsity of \a matrix. | ||||
|    * | ||||
|    * This function is particularly useful when solving for several problems having the same structure. | ||||
|    * | ||||
|    * \sa factorize(), compute() | ||||
|    */ | ||||
|   template <typename InputMatrixType> | ||||
|   void analyzePattern(const InputMatrixType &matrix) { | ||||
|     if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common); | ||||
|     if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | ||||
|  | ||||
|     grab(matrix.derived()); | ||||
|  | ||||
|     analyzePattern_impl(); | ||||
|   } | ||||
|  | ||||
|   /** Provides access to the control settings array used by KLU. | ||||
|    * | ||||
|    * See KLU documentation for details. | ||||
|    */ | ||||
|   inline const klu_common &kluCommon() const { return m_common; } | ||||
|  | ||||
|   /** Provides access to the control settings array used by UmfPack. | ||||
|    * | ||||
|    * If this array contains NaN's, the default values are used. | ||||
|    * | ||||
|    * See KLU documentation for details. | ||||
|    */ | ||||
|   inline klu_common &kluCommon() { return m_common; } | ||||
|  | ||||
|   /** Performs a numeric decomposition of \a matrix | ||||
|    * | ||||
|    * The given matrix must has the same sparsity than the matrix on which the pattern anylysis has been performed. | ||||
|    * | ||||
|    * \sa analyzePattern(), compute() | ||||
|    */ | ||||
|   template <typename InputMatrixType> | ||||
|   void factorize(const InputMatrixType &matrix) { | ||||
|     eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()"); | ||||
|     if (m_numeric) klu_free_numeric(&m_numeric, &m_common); | ||||
|  | ||||
|     grab(matrix.derived()); | ||||
|  | ||||
|     factorize_impl(); | ||||
|   } | ||||
|  | ||||
|   /** \internal */ | ||||
|   template <typename BDerived, typename XDerived> | ||||
|   bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; | ||||
|  | ||||
| #if 0  // not implemented yet | ||||
|     Scalar determinant() const; | ||||
|  | ||||
|     void extractData() const; | ||||
| #endif | ||||
|  | ||||
|  protected: | ||||
|   void init() { | ||||
|     m_info = InvalidInput; | ||||
|     m_isInitialized = false; | ||||
|     m_numeric = 0; | ||||
|     m_symbolic = 0; | ||||
|     m_extractedDataAreDirty = true; | ||||
|  | ||||
|     klu_defaults(&m_common); | ||||
|   } | ||||
|  | ||||
|   void analyzePattern_impl() { | ||||
|     m_info = InvalidInput; | ||||
|     m_analysisIsOk = false; | ||||
|     m_factorizationIsOk = false; | ||||
|     m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()), | ||||
|                              const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()), | ||||
|                              const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), &m_common); | ||||
|     if (m_symbolic) { | ||||
|       m_isInitialized = true; | ||||
|       m_info = Success; | ||||
|       m_analysisIsOk = true; | ||||
|       m_extractedDataAreDirty = true; | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   void factorize_impl() { | ||||
|     m_numeric = klu_factor(const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()), | ||||
|                            const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), | ||||
|                            const_cast<Scalar *>(mp_matrix.valuePtr()), m_symbolic, &m_common, Scalar()); | ||||
|  | ||||
|     m_info = m_numeric ? Success : NumericalIssue; | ||||
|     m_factorizationIsOk = m_numeric ? 1 : 0; | ||||
|     m_extractedDataAreDirty = true; | ||||
|   } | ||||
|  | ||||
|   template <typename MatrixDerived> | ||||
|   void grab(const EigenBase<MatrixDerived> &A) { | ||||
|     internal::destroy_at(&mp_matrix); | ||||
|     internal::construct_at(&mp_matrix, A.derived()); | ||||
|   } | ||||
|  | ||||
|   void grab(const KLUMatrixRef &A) { | ||||
|     if (&(A.derived()) != &mp_matrix) { | ||||
|       internal::destroy_at(&mp_matrix); | ||||
|       internal::construct_at(&mp_matrix, A); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   // cached data to reduce reallocation, etc. | ||||
| #if 0  // not implemented yet | ||||
|     mutable LUMatrixType m_l; | ||||
|     mutable LUMatrixType m_u; | ||||
|     mutable IntColVectorType m_p; | ||||
|     mutable IntRowVectorType m_q; | ||||
| #endif | ||||
|  | ||||
|   KLUMatrixType m_dummy; | ||||
|   KLUMatrixRef mp_matrix; | ||||
|  | ||||
|   klu_numeric *m_numeric; | ||||
|   klu_symbolic *m_symbolic; | ||||
|   klu_common m_common; | ||||
|   mutable ComputationInfo m_info; | ||||
|   int m_factorizationIsOk; | ||||
|   int m_analysisIsOk; | ||||
|   mutable bool m_extractedDataAreDirty; | ||||
|  | ||||
|  private: | ||||
|   KLU(const KLU &) {} | ||||
| }; | ||||
|  | ||||
| #if 0  // not implemented yet | ||||
| template<typename MatrixType> | ||||
| void KLU<MatrixType>::extractData() const | ||||
| { | ||||
|   if (m_extractedDataAreDirty) | ||||
|   { | ||||
|      eigen_assert(false && "KLU: extractData Not Yet Implemented"); | ||||
|  | ||||
|     // get size of the data | ||||
|     int lnz, unz, rows, cols, nz_udiag; | ||||
|     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); | ||||
|  | ||||
|     // allocate data | ||||
|     m_l.resize(rows,(std::min)(rows,cols)); | ||||
|     m_l.resizeNonZeros(lnz); | ||||
|  | ||||
|     m_u.resize((std::min)(rows,cols),cols); | ||||
|     m_u.resizeNonZeros(unz); | ||||
|  | ||||
|     m_p.resize(rows); | ||||
|     m_q.resize(cols); | ||||
|  | ||||
|     // extract | ||||
|     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), | ||||
|                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), | ||||
|                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric); | ||||
|  | ||||
|     m_extractedDataAreDirty = false; | ||||
|   } | ||||
| } | ||||
|  | ||||
| template<typename MatrixType> | ||||
| typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const | ||||
| { | ||||
|   eigen_assert(false && "KLU: extractData Not Yet Implemented"); | ||||
|   return Scalar(); | ||||
| } | ||||
| #endif | ||||
|  | ||||
| template <typename MatrixType> | ||||
| template <typename BDerived, typename XDerived> | ||||
| bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const { | ||||
|   Index rhsCols = b.cols(); | ||||
|   EIGEN_STATIC_ASSERT((XDerived::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | ||||
|   eigen_assert(m_factorizationIsOk && | ||||
|                "The decomposition is not in a valid state for solving, you must first call either compute() or " | ||||
|                "analyzePattern()/factorize()"); | ||||
|  | ||||
|   x = b; | ||||
|   int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), | ||||
|                        const_cast<klu_common *>(&m_common), Scalar()); | ||||
|  | ||||
|   m_info = info != 0 ? Success : NumericalIssue; | ||||
|   return true; | ||||
| } | ||||
|  | ||||
| }  // end namespace Eigen | ||||
|  | ||||
| #endif  // EIGEN_KLUSUPPORT_H | ||||
		Reference in New Issue
	
	Block a user