update
This commit is contained in:
parent
b39bf04dd4
commit
5e4375af09
@ -32,7 +32,7 @@ def main():
|
||||
|
||||
|
||||
def hamiltonian(width, length, B): # 方格子哈密顿量
|
||||
h = np.zeros((width*length, width*length))*(1+0j)
|
||||
h = np.zeros((width*length, width*length), dtype=complex)
|
||||
# y方向的跃迁
|
||||
for x in range(length):
|
||||
for y in range(width-1):
|
||||
|
@ -0,0 +1,57 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/18306
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import cmath
|
||||
import functools
|
||||
import guan
|
||||
|
||||
|
||||
def hamiltonian(kx, ky, Ny, a, B):
|
||||
h00 = np.zeros((4*Ny, 4*Ny), dtype=complex)
|
||||
h01 = np.zeros((4*Ny, 4*Ny), dtype=complex)
|
||||
t1= 1
|
||||
M = 0
|
||||
for i in range(Ny):
|
||||
h00[i*4+0, i*4+0] = M
|
||||
h00[i*4+1, i*4+1] = -M
|
||||
h00[i*4+2, i*4+2] = M
|
||||
h00[i*4+3, i*4+3] = -M
|
||||
h00[i*4+0, i*4+1] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+1/4*a)*(np.sqrt(3)/2*a))
|
||||
h00[i*4+1, i*4+0] = np.conj(h00[i*4+0, i*4+1])
|
||||
h00[i*4+1, i*4+2] = t1
|
||||
h00[i*4+2, i*4+1] = np.conj(h00[i*4+1, i*4+2])
|
||||
h00[i*4+2, i*4+3] = t1*cmath.exp(2*pi*1j*B*(3*a*i+7/4*a)*(np.sqrt(3)/2)*a)
|
||||
h00[i*4+3, i*4+2] = np.conj(h00[i*4+2, i*4+3])
|
||||
for i in range(Ny-1):
|
||||
h00[i*4+3, (i+1)*4+0] = t1
|
||||
h00[(i+1)*4+0, i*4+3] = t1
|
||||
h00[(Ny-1)*4+3, 0+0] = t1*cmath.exp(1j*ky)
|
||||
h00[0+0, (Ny-1)*4+3] = t1*cmath.exp(-1j*ky)
|
||||
for i in range(Ny):
|
||||
h01[i*4+1, i*4+0] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+1/4*a)*(np.sqrt(3)/2*a))
|
||||
h01[i*4+2, i*4+3] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+7/4*a)*(np.sqrt(3)/2*a))
|
||||
matrix = h00 + h01*cmath.exp(1j*kx) + h01.transpose().conj()*cmath.exp(-1j*kx)
|
||||
return matrix
|
||||
|
||||
|
||||
def main():
|
||||
Ny = 10
|
||||
a = 1
|
||||
|
||||
k_array = np.linspace(-pi, pi, 100)
|
||||
H_k = functools.partial(hamiltonian, ky=0, Ny=Ny, a=a, B=1/(3*a*Ny))
|
||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, H_k)
|
||||
guan.plot(k_array, eigenvalue_array, xlabel='kx', ylabel='E', type='k')
|
||||
|
||||
H_k = functools.partial(hamiltonian, Ny=Ny, a=a, B=1/(3*a*Ny))
|
||||
chern_number = guan.calculate_chern_number_for_square_lattice(H_k, precision=100)
|
||||
print(chern_number)
|
||||
print(sum(chern_number))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,42 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/18306
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import cmath
|
||||
import functools
|
||||
import guan
|
||||
|
||||
def hamiltonian(kx, ky, Ny, B):
|
||||
h00 = np.zeros((Ny, Ny), dtype=complex)
|
||||
h01 = np.zeros((Ny, Ny), dtype=complex)
|
||||
t = 1
|
||||
for iy in range(Ny-1):
|
||||
h00[iy, iy+1] = t
|
||||
h00[iy+1, iy] = t
|
||||
h00[Ny-1, 0] = t*cmath.exp(1j*ky)
|
||||
h00[0, Ny-1] = t*cmath.exp(-1j*ky)
|
||||
for iy in range(Ny):
|
||||
h01[iy, iy] = t*cmath.exp(-2*np.pi*1j*B*iy)
|
||||
matrix = h00 + h01*cmath.exp(1j*kx) + h01.transpose().conj()*cmath.exp(-1j*kx)
|
||||
return matrix
|
||||
|
||||
|
||||
def main():
|
||||
Ny = 40
|
||||
|
||||
k_array = np.linspace(-pi, pi, 100)
|
||||
H_k = functools.partial(hamiltonian, ky=0, Ny=Ny, B=1/Ny)
|
||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, H_k)
|
||||
guan.plot(k_array, eigenvalue_array, xlabel='kx', ylabel='E', type='k')
|
||||
|
||||
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
|
||||
chern_number = guan.calculate_chern_number_for_square_lattice(H_k, precision=100)
|
||||
print(chern_number)
|
||||
print(sum(chern_number))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user