Create calculation_of_Chern_number_by_Wilson_loop_for_degenerate_case.py
This commit is contained in:
parent
794aad4a8e
commit
5f45471278
@ -0,0 +1,109 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/23989
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import cmath
|
||||
import functools
|
||||
|
||||
def hamiltonian(kx, ky, Ny, B):
|
||||
h00 = np.zeros((Ny, Ny), dtype=complex)
|
||||
h01 = np.zeros((Ny, Ny), dtype=complex)
|
||||
t = 1
|
||||
for iy in range(Ny-1):
|
||||
h00[iy, iy+1] = t
|
||||
h00[iy+1, iy] = t
|
||||
h00[Ny-1, 0] = t*cmath.exp(1j*ky)
|
||||
h00[0, Ny-1] = t*cmath.exp(-1j*ky)
|
||||
for iy in range(Ny):
|
||||
h01[iy, iy] = t*cmath.exp(-2*np.pi*1j*B*iy)
|
||||
matrix = h00 + h01*cmath.exp(1j*kx) + h01.transpose().conj()*cmath.exp(-1j*kx)
|
||||
return matrix
|
||||
|
||||
|
||||
def main():
|
||||
Ny = 20
|
||||
|
||||
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, num_of_bands=range(int(Ny/2)-1), precision_of_Wilson_loop=5)
|
||||
print('价带:', chern_number)
|
||||
print()
|
||||
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, num_of_bands=range(int(Ny/2)+2), precision_of_Wilson_loop=5)
|
||||
print('价带(包含两个交叉能带):', chern_number)
|
||||
print()
|
||||
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, num_of_bands=range(Ny), precision_of_Wilson_loop=5)
|
||||
print('所有能带:', chern_number)
|
||||
|
||||
# # 函数可通过Guan软件包调用。安装方法:pip install --upgrade guan
|
||||
# import guan
|
||||
# chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
|
||||
|
||||
|
||||
def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0):
|
||||
import math
|
||||
delta = 2*math.pi/precision_of_plaquettes
|
||||
chern_number = 0
|
||||
for kx in np.arange(-math.pi, math.pi, delta):
|
||||
if print_show == 1:
|
||||
print(kx)
|
||||
for ky in np.arange(-math.pi, math.pi, delta):
|
||||
vector_array = []
|
||||
# line_1
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_2
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_3
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_4
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
Wilson_loop = 1
|
||||
dim = len(num_of_bands)
|
||||
for i0 in range(len(vector_array)-1):
|
||||
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||
i01 = 0
|
||||
for dim1 in num_of_bands:
|
||||
i02 = 0
|
||||
for dim2 in num_of_bands:
|
||||
dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
|
||||
i02 += 1
|
||||
i01 += 1
|
||||
det_value = np.linalg.det(dot_matrix)
|
||||
Wilson_loop = Wilson_loop*det_value
|
||||
dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
|
||||
i01 = 0
|
||||
for dim1 in num_of_bands:
|
||||
i02 = 0
|
||||
for dim2 in num_of_bands:
|
||||
dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
|
||||
i02 += 1
|
||||
i01 += 1
|
||||
det_value = np.linalg.det(dot_matrix_plus)
|
||||
Wilson_loop = Wilson_loop*det_value
|
||||
arg = np.log(Wilson_loop)/1j
|
||||
chern_number = chern_number + arg
|
||||
chern_number = chern_number/(2*math.pi)
|
||||
return chern_number
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user