This commit is contained in:
2023-07-26 00:46:01 +08:00
parent c7cbcd09af
commit 822fa7e626
212 changed files with 5687 additions and 5687 deletions

View File

@@ -0,0 +1,43 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/962
"""
import numpy as np
def hamiltonian(width=2, length=4): # 有一定宽度和长度的方格子
h00 = np.zeros((width*length, width*length))
for i0 in range(length):
for j0 in range(width-1):
h00[i0*width+j0, i0*width+j0+1] = 1
h00[i0*width+j0+1, i0*width+j0] = 1
for i0 in range(length-1):
for j0 in range(width):
h00[i0*width+j0, (i0+1)*width+j0] = 1
h00[(i0+1)*width+j0, i0*width+j0] = 1
return h00
def main():
h0 = hamiltonian()
dim = h0.shape[0]
n = 4 # 选取第n个能级
eigenvalue, eigenvector = np.linalg.eig(h0) # 本征值、本征矢
# print(h0)
# print('哈密顿量的维度:', dim) # 哈密顿量的维度
# print('本征矢的维度:', eigenvector.shape) # 本征矢的维度
# print('能级(未排序):', eigenvalue) # 输出本征值。因为体系是受限的,所以是离散的能级
# print('选取第', n, '个能级,为', eigenvalue[n-1]) # 从1开始算查看第n个能级是什么这里本征值未排序
# print('第', n, '个能级对应的波函数:', eigenvector[:, n-1]) # 查看第n个能级对应的波函数
print('\n波函数模的平方:\n', np.square(np.abs(eigenvector[:, n-1]))) # 查看第n个能级对应的波函数模的平方
green = np.linalg.inv((eigenvalue[n-1]+1e-15j)*np.eye(dim)-h0) # 第n个能级对应的格林函数
total = np.trace(np.imag(green)) # 求该能级格林函数的迹,对应的是总态密度(忽略符号和系数)
print('归一化后的态密度分布:')
for i in range(dim):
print(np.imag(green)[i, i]/total) # 第n个能级单位化后的态密度分布
print('观察以上两个分布的数值情况,可以发现两者完全相同。')
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,160 @@
! This code is supported by the website: https://www.guanjihuan.com
! The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3785
module global
implicit none
double precision sqrt3,Pi
parameter(sqrt3=1.7320508075688773d0,Pi=3.14159265358979324d0)
end module global
program QPI !QPI主程序
use blas95
use lapack95,only:GETRF,GETRI
use global
implicit none
integer i,j,info,index_0(4)
double precision omega,kx,ky,Eigenvalues(4),eta,V0,kx1,kx2,ky1,ky2,qx,qy,time_begin,time_end
parameter(eta=0.005)
complex*16 H0(4,4),green_0(4,4),green_1(4,4),green_0_k1(4,4),green_0_k2(4,4),A_spectral,V(4,4),gamma_0(4,4),Temp_0(4,4),T(4,4),g_1,rho_1
character(len=*):: Flname
parameter(Flname='') !可以写上输出文件路径,也可以不写,输出存在当前文件的路径
omega=0.070d0
open(unit=10,file=Flname//'Spectral function_w=0.07.txt')
open(unit=20,file=Flname//'QPI_intra_nonmag_w=0.07.txt')
call CPU_TIME(time_begin)
!计算谱函数A(kx,ky)
write(10,"(f20.10,x)",advance='no') 0
do ky=-Pi,Pi,0.01d0 !谱函数图案的精度
write(10,"(f20.10,x)",advance='no') ky
enddo
write(10,"(a)",advance='yes') ' '
do kx=-Pi,Pi,0.01d0 !谱函数图案的精度
write(10,"(f20.10,x)",advance='no') kx
do ky=-Pi,Pi,0.01d0 !谱函数图案的精度
call Greenfunction_clean(kx,ky,eta,omega,green_0)
A_spectral=-(green_0(1,1)+green_0(3,3))/Pi
write(10,"(f20.10)",advance='no') imag(A_spectral)
enddo
write(10,"(a)",advance='yes') ' '
enddo
!计算QPI(qx,qy)
V0=0.4d0
V=0.d0
V(1,1)=V0
V(2,2)=-V0
V(3,3)=V0
V(4,4)=-V0
gamma_0=0.d0
do kx=-Pi,Pi,0.01
do ky=-Pi,Pi,0.01
call Greenfunction_clean(kx,ky,eta,omega,green_0)
do i=1,4
do j=1,4
gamma_0(i,j)=gamma_0(i,j)+green_0(i,j)*0.01*0.01
enddo
enddo
enddo
enddo
gamma_0=gamma_0/(2*Pi)/(2*Pi)
call gemm(V,gamma_0,Temp_0)
do i=1,4
Temp_0(i,i)=1-Temp_0(i,i)
enddo
call GETRF( Temp_0,index_0,info ); call GETRI( Temp_0,index_0,info) !求逆
call gemm(Temp_0,V,T) !矩阵乘积
write(20,"(f20.10,x)",advance='no') 0
do qy=-Pi,Pi,0.01 !QPI图案的精度
write(20,"(f20.10,x)",advance='no') qy
enddo
write(20,"(a)",advance='yes') ' '
do qx=-Pi,Pi,0.01 !QPI图案的精度
write(*,"(a)",advance='no') 'qx='
write(*,*) qx !屏幕输出可以实时查看计算进度
write(20,"(f20.10)",advance='no') qx
do qy=-Pi,Pi,0.01 !QPI图案的精度
rho_1=0.d0
do kx1=-Pi,Pi,0.06 !积分的精度
kx2=kx1+qx
do ky1=-Pi,Pi,0.06 !积分的精度
ky2=ky1+qy
call Greenfunction_clean(kx1,ky1,eta,omega,green_0_k1)
call Greenfunction_clean(kx2,ky2,eta,omega,green_0_k2)
call gemm(green_0_k1,T,Temp_0)
call gemm(Temp_0, green_0_k2, green_1)
g_1=green_1(1,1)-dconjg(green_1(1,1))+green_1(3,3)-dconjg(green_1(3,3))
rho_1=rho_1+g_1*0.06*0.06
enddo
enddo
rho_1=rho_1/(2*Pi)/(2*Pi)/(2*Pi)*(0.d0,1.d0)
write(20,"(f20.10,x,f20.10)",advance='no') real(rho_1)
enddo
write(20,"(a)",advance='yes') ' '
enddo
call CPU_TIME(time_end)
write(*,"(a)",advance='no') 'The running time of this task='
write (*,*) time_end-time_begin !屏幕输出总的计算时间单位为秒按照当前步长的精度在个人计算机上运算大概需要4个小时
end program
subroutine Greenfunction_clean(kx,ky,eta,omega,green_0) !干净体系的格林函数
use blas95
use lapack95,only:GETRF,GETRI
use global
integer info,index_0(4)
double precision, intent(in):: kx,ky,eta,omega
complex*16 H0(4,4)
complex*16,intent(out):: green_0(4,4)
call Hamiltonian(kx,ky,H0)
green_0=H0
do i=1,4
green_0(i,i)=omega+(0.d0,1.d0)*eta-green_0(i,i)
enddo
call GETRF( green_0,index_0,info ); call GETRI( green_0,index_0,info );
end subroutine Greenfunction_clean
subroutine Hamiltonian(kx,ky,Matrix) !哈密顿量
use global
implicit none
integer i,j
double precision t1,t2,t3,t4,mu,epsilon_x,epsilon_y,epsilon_xy,delta_1,delta_2,delta_0
double precision, intent(in):: kx,ky
complex*16,intent(out):: Matrix(4,4)
t1=-1;t2=1.3;t3=-0.85;t4=-0.85;delta_0=0.1;mu=1.54
Matrix=(0.d0,0.d0)
epsilon_x=-2*t1*dcos(kx)-2*t2*dcos(ky)-4*t3*dcos(kx)*dcos(ky)
epsilon_y=-2*t1*dcos(ky)-2*t2*dcos(kx)-4*t3*dcos(kx)*dcos(ky)
epsilon_xy=-4*t4*dsin(kx)*dsin(ky)
delta_1=delta_0*dcos(kx)*dcos(ky)
delta_2=delta_1
Matrix(1,1)=epsilon_x-mu
Matrix(2,2)=-epsilon_x+mu
Matrix(3,3)=epsilon_y-mu
Matrix(4,4)=-epsilon_y+mu
Matrix(1,2)=delta_1
Matrix(2,1)=delta_1
Matrix(1,3)=epsilon_xy
Matrix(3,1)=epsilon_xy
Matrix(1,4)=0.d0
Matrix(4,1)=0.d0
Matrix(2,3)=0.d0
Matrix(3,2)=0.d0
Matrix(2,4)=-epsilon_xy
Matrix(4,2)=-epsilon_xy
Matrix(3,4)=delta_2
Matrix(4,3)=delta_2
end subroutine Hamiltonian

View File

@@ -0,0 +1,158 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3785
"""
import numpy as np
from math import *
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import time
def green_function(fermi_energy, k1, k2, hamiltonian): # 计算格林函数
matrix0 = hamiltonian(k1, k2)
dim = matrix0.shape[0]
green = np.linalg.inv(fermi_energy * np.identity(dim) - matrix0)
return green
def spectral_function(fermi_energy, k1, k2, hamiltonian): # 计算谱函数
dim1 = k1.shape[0]
dim2 = k2.shape[0]
spectrum = np.zeros((dim1, dim2))
i0 = 0
for k10 in k1:
j0 = 0
for k20 in k2:
green = green_function(fermi_energy, k10, k20, hamiltonian)
spectrum[i0, j0] = (np.imag(green[0,0])+np.imag(green[2,2]))/(-pi)
j0 += 1
i0 += 1
# print(spectrum)
print()
print('Spectral function显示的网格点 =', k1.shape[0], '*', k1.shape[0], '; 步长 =', k1[1] - k1[0])
print()
return spectrum
def qpi(fermi_energy, q1, q2, hamiltonian, potential_i): # 计算QPI
dim = hamiltonian(0, 0).shape[0]
ki1 = np.arange(-pi, pi, 0.01) # 计算gamma_0时k的积分密度
ki2 = np.arange(-pi, pi, 0.01)
print('gamma_0的积分网格点 =', ki1.shape[0], '*', ki1.shape[0], '; 步长 =', ki1[1] - ki1[0])
gamma_0 = integral_of_green(fermi_energy, ki1, ki2, hamiltonian)/np.square(2*pi)
t_matrix = np.dot(np.linalg.inv(np.identity(dim)-np.dot(potential_i, gamma_0)), potential_i)
ki1 = np.arange(-pi, pi, 0.06) # 计算induced_local_density时k的积分密度
ki2 = np.arange(-pi, pi, 0.06)
print('局域态密度变化的积分网格点 =', ki1.shape[0], '*', ki1.shape[0], '; 步长 =', ki1[1] - ki1[0])
print('QPI显示的网格点 =', q1.shape[0], '*', q1.shape[0], '; 步长 =', q1[1] - q1[0])
step_length = ki1[1] - ki1[0]
induced_local_density = np.zeros((q1.shape[0], q2.shape[0]))*(1+0j)
print()
i0 = 0
for q10 in q1:
print('i0=', i0)
j0 = 0
for q20 in q2:
for ki10 in ki1:
for ki20 in ki2:
green_01 = green_function(fermi_energy, ki10, ki20, hamiltonian)
green_02 = green_function(fermi_energy, ki10+q10, ki20+q20, hamiltonian)
induced_green = np.dot(np.dot(green_01, t_matrix), green_02)
temp = induced_green[0, 0]-induced_green[0, 0].conj()+induced_green[2, 2]-induced_green[2, 2].conj()
induced_local_density[i0, j0] = induced_local_density[i0, j0]+temp*np.square(step_length)
j0 += 1
i0 += 1
write_matrix_k1_k2(q1, q2, np.real(induced_local_density*1j/np.square(2*pi)/(2*pi)), 'QPI') # 数据写入文件(临时写入,会被多次替代)
induced_local_density = np.real(induced_local_density*1j/np.square(2*pi)/(2*pi))
return induced_local_density
def integral_of_green(fermi_energy, ki1, ki2, hamiltonian): # 在计算QPI时需要对格林函数积分
dim = hamiltonian(0, 0).shape[0]
integral_value = np.zeros((dim, dim))*(1+0j)
step_length = ki1[1]-ki1[0]
for ki10 in ki1:
for ki20 in ki2:
green = green_function(fermi_energy, ki10, ki20, hamiltonian)
integral_value = integral_value+green*np.square(step_length)
return integral_value
def write_matrix_k1_k2(x1, x2, value, filename='matrix_k1_k2'): # 把矩阵数据写入文件(格式化输出)
with open(filename+'.txt', 'w') as f:
np.set_printoptions(suppress=True) # 取消输出科学记数法
f.write('0 ')
for x10 in x1:
f.write(str(x10)+' ')
f.write('\n')
i0 = 0
for x20 in x2:
f.write(str(x20))
for j0 in range(x1.shape[0]):
f.write(' '+str(value[i0, j0])+' ')
f.write('\n')
i0 += 1
def plot_contour(x1, x2, value, filename='contour'): # 直接画出contour图像保存图像
plt.contourf(x1, x2, value) #, cmap=plt.cm.hot)
plt.savefig(filename+'.eps')
# plt.show()
def hamiltonian(kx, ky): # 体系的哈密顿量
t1 = -1; t2 = 1.3; t3 = -0.85; t4 = -0.85; delta_0 = 0.1; mu = 1.54
epsilon_x = -2*t1*cos(kx)-2*t2*cos(ky)-4*t3*cos(kx)*cos(ky)
epsilon_y = -2*t1*cos(ky)-2*t2*cos(kx)-4*t3*cos(kx)*cos(ky)
epsilon_xy = -4*t4*sin(kx)*sin(ky)
delta_1 = delta_0*cos(kx)*cos(ky)
delta_2 = delta_0*cos(kx)*cos(ky)
h = np.zeros((4, 4))
h[0, 0] = epsilon_x-mu
h[1, 1] = -epsilon_x+mu
h[2, 2] = epsilon_y-mu
h[3, 3] = -epsilon_y+mu
h[0, 1] = delta_1
h[1, 0] = delta_1
h[0, 2] = epsilon_xy
h[2, 0] = epsilon_xy
h[0, 3] = 0
h[3, 0] = 0
h[1, 2] = 0
h[2, 1] = 0
h[1, 3] = -epsilon_xy
h[3, 1] = -epsilon_xy
h[2, 3] = delta_2
h[3, 2] = delta_2
return h
def main(): # 主程序
start_clock = time.perf_counter()
fermi_energy = 0.07 # 费米能
energy_broadening_width = 0.005 # 展宽
k1 = np.arange(-pi, pi, 0.01) # 谱函数的图像精度
k2 = np.arange(-pi, pi, 0.01)
spectrum = spectral_function(fermi_energy+energy_broadening_width*1j, k1, k2, hamiltonian) # 调用谱函数子程序
write_matrix_k1_k2(k1, k2, spectrum, 'Spectral_function') # 把谱函数的数据写入文件
# plot_contour(k1, k2, spectrum, 'Spectral_function') # 直接显示谱函数的图像(保存图像)
q1 = np.arange(-pi, pi, 0.01) # QPI数的图像精度
q2 = np.arange(-pi, pi, 0.01)
potential_i = (0.4+0j)*np.identity(hamiltonian(0, 0).shape[0]) # 杂质势
potential_i[1, 1] = - potential_i[1, 1] # for nonmagnetic
potential_i[3, 3] = - potential_i[3, 3]
induced_local_density = qpi(fermi_energy+energy_broadening_width*1j, q1, q2, hamiltonian, potential_i) # 调用QPI子程序
write_matrix_k1_k2(q1, q2, induced_local_density, 'QPI') # 把QPI数据写入文件这里用的方法是计算结束后一次性把数据写入
# plot_contour(q1, q2, induced_local_density, 'QPI') # 直接显示QPI图像保存图像
end_clock = time.perf_counter()
print('CPU执行时间=', end_clock - start_clock)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,56 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/4622
"""
import numpy as np
import matplotlib.pyplot as plt
from math import *
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
def hamiltonian(width=8, length=8): # 石墨烯格子的哈密顿量。这里width要求为4的倍数
h = np.zeros((width*length, width*length))
# y方向的跃迁
for x in range(length):
for y in range(width-1):
h[x*width+y, x*width+y+1] = 1
h[x*width+y+1, x*width+y] = 1
# x方向的跃迁
for x in range(length-1):
for y in range(width):
if np.mod(y, 4)==0:
h[x*width+y+1, (x+1)*width+y] = 1
h[(x+1)*width+y, x*width+y+1] = 1
h[x*width+y+2, (x+1)*width+y+3] = 1
h[(x+1)*width+y+3, x*width+y+2] = 1
return h
def main():
plot_precision = 0.01 # 画图的精度
Fermi_energy_array = np.arange(-5, 5, plot_precision) # 计算中取的费米能Fermi_energy组成的数组
dim_energy = Fermi_energy_array.shape[0] # 需要计算的费米能的个数
total_DOS_array = np.zeros((dim_energy)) # 计算结果总态密度total_DOS放入该数组中
h = hamiltonian() # 体系的哈密顿量
dim = h.shape[0] # 哈密顿量的维度
i0 = 0
for Fermi_energy in Fermi_energy_array:
print(Fermi_energy) # 查看计算的进展情况
green = np.linalg.inv((Fermi_energy+0.1j)*np.eye(dim)-h) # 体系的格林函数
total_DOS = -np.trace(np.imag(green))/pi # 通过格林函数求得总态密度
total_DOS_array[i0] = total_DOS # 记录每个Fermi_energy对应的总态密度
i0 += 1
sum_up = np.sum(total_DOS_array)*plot_precision # 用于图像归一化
plt.plot(Fermi_energy_array, total_DOS_array/sum_up, '-') # 画DOS(E)图像
plt.xlabel('费米能')
plt.ylabel('总态密度')
plt.show()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,52 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/4622
"""
import numpy as np
import matplotlib.pyplot as plt
from math import *
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
def hamiltonian(width=10, length=10): # 方格子哈密顿量
h = np.zeros((width*length, width*length))
# y方向的跃迁
for x in range(length):
for y in range(width-1):
h[x*width+y, x*width+y+1] = 1
h[x*width+y+1, x*width+y] = 1
# x方向的跃迁
for x in range(length-1):
for y in range(width):
h[x*width+y, (x+1)*width+y] = 1
h[(x+1)*width+y, x*width+y] = 1
return h
def main():
plot_precision = 0.01 # 画图的精度
Fermi_energy_array = np.arange(-5, 5, plot_precision) # 计算中取的费米能Fermi_energy组成的数组
dim_energy = Fermi_energy_array.shape[0] # 需要计算的费米能的个数
total_DOS_array = np.zeros((dim_energy)) # 计算结果总态密度total_DOS放入该数组中
h = hamiltonian() # 体系的哈密顿量
dim = h.shape[0] # 哈密顿量的维度
i0 = 0
for Fermi_energy in Fermi_energy_array:
print(Fermi_energy) # 查看计算的进展情况
green = np.linalg.inv((Fermi_energy+0.1j)*np.eye(dim)-h) # 体系的格林函数
total_DOS = -np.trace(np.imag(green))/pi # 通过格林函数求得总态密度
total_DOS_array[i0] = total_DOS # 记录每个Fermi_energy对应的总态密度
i0 += 1
sum_up = np.sum(total_DOS_array)*plot_precision # 用于图像归一化
plt.plot(Fermi_energy_array, total_DOS_array/sum_up, '-') # 画DOS(E)图像
plt.xlabel('费米能')
plt.ylabel('总态密度')
plt.show()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,84 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/4396
"""
import numpy as np
import matplotlib.pyplot as plt
import copy
import time
def matrix_00(width): # 一个切片slide)内的哈密顿量
h00 = np.zeros((width, width))
for width0 in range(width-1):
h00[width0, width0+1] = 1
h00[width0+1, width0] = 1
return h00
def matrix_01(width): # 切片之间的跃迁项hopping
h01 = np.identity(width)
return h01
def matrix_whole(width, length): # 方格子整体的哈密顿量宽度为width长度为length
hamiltonian = np.zeros((width*length, width*length))
for x in range(length):
for y in range(width-1):
hamiltonian[x*width+y, x*width+y+1] = 1
hamiltonian[x*width+y+1, x*width+y] = 1
for x in range(length-1):
for y in range(width):
hamiltonian[x*width+y, (x+1)*width+y] = 1
hamiltonian[(x+1)*width+y, x*width+y] = 1
return hamiltonian
def main():
width =4 # 方格子的宽度
length = 200 # 方格子的长度
h00 = matrix_00(width) # 一个切片slide)内的哈密顿量
h01 = matrix_01(width) # 切片之间的跃迁项hopping
hamiltonian = matrix_whole(width, length) # 方格子整体的哈密顿量宽度为width长度为length
fermi_energy = 0.1 # 费米能取为0.1为例。按理来说计算格林函数时这里需要加上一个无穷小的虚数但Python中好像不加也不会有什么问题。
start_1= time.perf_counter()
green = General_way(fermi_energy, hamiltonian) # 利用通常直接求逆的方法得到整体的格林函数green
end_1 = time.perf_counter()
start_2= time.perf_counter()
green_0n_n = Dyson_way(fermi_energy, h00, h01, length) # 利用Dyson方程得到的格林函数green_0n
end_2 = time.perf_counter()
# print(green)
print('\n整体格林函数中的一个分块矩阵green_0n\n', green[0:width, (length-1)*width+0:(length-1)*width+width]) # a:b代表 a <= x < b左闭右开
print('Dyson方程得到的格林函数green_0n\n', green_0n_n)
print('观察以上两个矩阵,可以直接看出两个矩阵完全相同。\n')
print('General_way执行时间=', end_1-start_1)
print('Dyson_way执行时间=', end_2-start_2)
def General_way(fermi_energy, hamiltonian):
dim_hamiltonian = hamiltonian.shape[0]
green = np.linalg.inv((fermi_energy)*np.eye(dim_hamiltonian)-hamiltonian)
return green
def Dyson_way(fermi_energy, h00, h01, length):
dim = h00.shape[0]
for ix in range(length):
if ix == 0:
green_nn_n = np.linalg.inv(fermi_energy*np.identity(dim)-h00) # 如果有左电极还需要减去左电极的自能left_self_energy
green_0n_n = copy.deepcopy(green_nn_n) # 如果直接用等于两个变量会指向相同的id改变一个值另外一个值可能会发生改变容易出错所以要用上这个COPY
elif ix != length-1:
green_nn_n = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n), h01))
green_0n_n = np.dot(np.dot(green_0n_n, h01), green_nn_n)
else: # 这里和elif ix != length-1中的内容完全一样但如果有右电极这里是还需要减去右电极的自能right_self_energy
green_nn_n = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n), h01))
green_0n_n = np.dot(np.dot(green_0n_n, h01), green_nn_n)
return green_0n_n
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,102 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/7650
"""
import numpy as np
import matplotlib.pyplot as plt
from math import *
def matrix_00(width, length):
h00 = np.zeros((width*length, width*length))
for x in range(length):
for y in range(width-1):
h00[x*width+y, x*width+y+1] = 1
h00[x*width+y+1, x*width+y] = 1
for x in range(length-1):
for y in range(width):
h00[x*width+y, (x+1)*width+y] = 1
h00[(x+1)*width+y, x*width+y] = 1
return h00
def matrix_01(width, length):
h01 = np.identity(width*length)
return h01
def main():
height = 2 # z
width = 3 # y
length = 4 # x
eta = 1e-2
E = 0
h00 = matrix_00(width, length)
h01 = matrix_01(width, length)
G_ii_n_array = G_ii_n_with_Dyson_equation(width, length, height, E, eta, h00, h01)
for i0 in range(height):
print('z=', i0+1, ':')
for j0 in range(width):
print(' y=', j0+1, ':')
for k0 in range(length):
print(' x=', k0+1, ' ', -np.imag(G_ii_n_array[i0, k0*width+j0, k0*width+j0])/pi) # 态密度
def G_ii_n_with_Dyson_equation(width, length, height, E, eta, h00, h01):
dim = length*width
G_ii_n_array = np.zeros((height, dim, dim), dtype=complex)
G_11_1 = np.linalg.inv((E+eta*1j)*np.identity(dim)-h00)
for i in range(height): # i为格林函数的右下指标
# 初始化开始
G_nn_n_minus = G_11_1
G_in_n_minus = G_11_1
G_ni_n_minus = G_11_1
G_ii_n_minus = G_11_1
for i0 in range(i):
G_nn_n = Green_nn_n(E, eta, h00, h01, G_nn_n_minus)
G_nn_n_minus = G_nn_n
if i!=0:
G_in_n_minus = G_nn_n
G_ni_n_minus = G_nn_n
G_ii_n_minus = G_nn_n
# 初始化结束
for j0 in range(height-1-i): # j0为格林函数的右上指标表示当前体系大小即G^{(j0)}
G_nn_n = Green_nn_n(E, eta, h00, h01, G_nn_n_minus)
G_nn_n_minus = G_nn_n
G_ii_n = Green_ii_n(G_ii_n_minus, G_in_n_minus, h01, G_nn_n, G_ni_n_minus) # 需要求的对角分块矩阵
G_ii_n_minus = G_ii_n
G_in_n = Green_in_n(G_in_n_minus, h01, G_nn_n)
G_in_n_minus = G_in_n
G_ni_n = Green_ni_n(G_nn_n, h01, G_ni_n_minus)
G_ni_n_minus = G_ni_n
G_ii_n_array[i, :, :] = G_ii_n_minus
return G_ii_n_array
def Green_nn_n(E, eta, H00, V, G_nn_n_minus): # n>=2
dim = H00.shape[0]
G_nn_n = np.linalg.inv((E+eta*1j)*np.identity(dim)-H00-np.dot(np.dot(V.transpose().conj(), G_nn_n_minus), V))
return G_nn_n
def Green_in_n(G_in_n_minus, V, G_nn_n): # n>=2
G_in_n = np.dot(np.dot(G_in_n_minus, V), G_nn_n)
return G_in_n
def Green_ni_n(G_nn_n, V, G_ni_n_minus): # n>=2
G_ni_n = np.dot(np.dot(G_nn_n, V.transpose().conj()), G_ni_n_minus)
return G_ni_n
def Green_ii_n(G_ii_n_minus, G_in_n_minus, V, G_nn_n, G_ni_n_minus): # n>=i
G_ii_n = G_ii_n_minus+np.dot(np.dot(np.dot(np.dot(G_in_n_minus, V), G_nn_n), V.transpose().conj()),G_ni_n_minus)
return G_ii_n
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,99 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/7650
"""
import numpy as np
import matplotlib.pyplot as plt
from math import *
def matrix_00(width, length):
h00 = np.zeros((width*length, width*length))
for x in range(length):
for y in range(width-1):
h00[x*width+y, x*width+y+1] = 1
h00[x*width+y+1, x*width+y] = 1
for x in range(length-1):
for y in range(width):
h00[x*width+y, (x+1)*width+y] = 1
h00[(x+1)*width+y, x*width+y] = 1
return h00
def matrix_01(width, length):
h01 = np.identity(width*length)
return h01
def main():
height = 2 # z
width = 3 # y
length = 4 # x
eta = 1e-2
E = 0
h00 = matrix_00(width, length)
h01 = matrix_01(width, length)
G_ii_n_with_Dyson_equation_version_II(width, length, height, E, eta, h00, h01)
def G_ii_n_with_Dyson_equation_version_II(width, length, height, E, eta, h00, h01):
dim = length*width
G_11_1 = np.linalg.inv((E+eta*1j)*np.identity(dim)-h00)
for i in range(height): # i为格林函数的右下指标
# 初始化开始
G_nn_n_minus = G_11_1
G_in_n_minus = G_11_1
G_ni_n_minus = G_11_1
G_ii_n_minus = G_11_1
for i0 in range(i):
G_nn_n = Green_nn_n(E, eta, h00, h01, G_nn_n_minus)
G_nn_n_minus = G_nn_n
if i!=0:
G_in_n_minus = G_nn_n
G_ni_n_minus = G_nn_n
G_ii_n_minus = G_nn_n
# 初始化结束
for j0 in range(height-1-i): # j0为格林函数的右上指标表示当前体系大小即G^{(j0)}
G_nn_n = Green_nn_n(E, eta, h00, h01, G_nn_n_minus)
G_nn_n_minus = G_nn_n
G_ii_n = Green_ii_n(G_ii_n_minus, G_in_n_minus, h01, G_nn_n, G_ni_n_minus) # 需要求的对角分块矩阵
G_ii_n_minus = G_ii_n
G_in_n = Green_in_n(G_in_n_minus, h01, G_nn_n)
G_in_n_minus = G_in_n
G_ni_n = Green_ni_n(G_nn_n, h01, G_ni_n_minus)
G_ni_n_minus = G_ni_n
# 输出
print('z=', i+1, ':')
for j0 in range(width):
print(' y=', j0+1, ':')
for k0 in range(length):
print(' x=', k0+1, ' ', -np.imag(G_ii_n_minus[k0*width+j0, k0*width+j0])/pi) # 态密度
def Green_nn_n(E, eta, H00, V, G_nn_n_minus): # n>=2
dim = H00.shape[0]
G_nn_n = np.linalg.inv((E+eta*1j)*np.identity(dim)-H00-np.dot(np.dot(V.transpose().conj(), G_nn_n_minus), V))
return G_nn_n
def Green_in_n(G_in_n_minus, V, G_nn_n): # n>=2
G_in_n = np.dot(np.dot(G_in_n_minus, V), G_nn_n)
return G_in_n
def Green_ni_n(G_nn_n, V, G_ni_n_minus): # n>=2
G_ni_n = np.dot(np.dot(G_nn_n, V.transpose().conj()), G_ni_n_minus)
return G_ni_n
def Green_ii_n(G_ii_n_minus, G_in_n_minus, V, G_nn_n, G_ni_n_minus): # n>=i
G_ii_n = G_ii_n_minus+np.dot(np.dot(np.dot(np.dot(G_in_n_minus, V), G_nn_n), V.transpose().conj()),G_ni_n_minus)
return G_ii_n
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,49 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/7650
"""
import numpy as np
import matplotlib.pyplot as plt
from math import *
def hamiltonian(width, length, height):
h = np.zeros((width*length*height, width*length*height))
for i0 in range(length):
for j0 in range(width):
for k0 in range(height-1):
h[k0*width*length+i0*width+j0, (k0+1)*width*length+i0*width+j0] = 1
h[(k0+1)*width*length+i0*width+j0, k0*width*length+i0*width+j0] = 1
for i0 in range(length):
for j0 in range(width-1):
for k0 in range(height):
h[k0*width*length+i0*width+j0, k0*width*length+i0*width+j0+1] = 1
h[k0*width*length+i0*width+j0+1, k0*width*length+i0*width+j0] = 1
for i0 in range(length-1):
for j0 in range(width):
for k0 in range(height):
h[k0*width*length+i0*width+j0, k0*width*length+(i0+1)*width+j0] = 1
h[k0*width*length+(i0+1)*width+j0, k0*width*length+i0*width+j0] = 1
return h
def main():
height = 2 # z
width = 3 # y
length = 4 # x
h = hamiltonian(width, length, height)
E = 0
green = np.linalg.inv((E+1e-2j)*np.eye(width*length*height)-h)
for k0 in range(height):
print('z=', k0+1, ':')
for j0 in range(width):
print(' y=', j0+1, ':')
for i0 in range(length):
print(' x=', i0+1, ' ', -np.imag(green[k0*width*length+i0*width+j0, k0*width*length+i0*width+j0])/pi) # 态密度
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,95 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/7650
"""
import numpy as np
import matplotlib.pyplot as plt
from math import *
def matrix_00(width):
h00 = np.zeros((width, width))
for width0 in range(width-1):
h00[width0, width0+1] = 1
h00[width0+1, width0] = 1
return h00
def matrix_01(width):
h01 = np.identity(width)
return h01
def main():
width = 2
length = 3
eta = 1e-2
E = 0
h00 = matrix_00(width)
h01 = matrix_01(width)
G_ii_n_array = G_ii_n_with_Dyson_equation(width, length, E, eta, h00, h01)
for i0 in range(length):
# print('G_{'+str(i0+1)+','+str(i0+1)+'}^{('+str(length)+')}:')
# print(G_ii_n_array[i0, :, :],'\n')
print('x=', i0+1, ':')
for j0 in range(width):
print(' y=', j0+1, ' ', -np.imag(G_ii_n_array[i0, j0, j0])/pi) # 态密度
def G_ii_n_with_Dyson_equation(width, length, E, eta, h00, h01):
G_ii_n_array = np.zeros((length, width, width), complex)
G_11_1 = np.linalg.inv((E+eta*1j)*np.identity(width)-h00)
for i in range(length): # i为格林函数的右下指标
# 初始化开始
G_nn_n_minus = G_11_1
G_in_n_minus = G_11_1
G_ni_n_minus = G_11_1
G_ii_n_minus = G_11_1
for i0 in range(i):
G_nn_n = Green_nn_n(E, eta, h00, h01, G_nn_n_minus)
G_nn_n_minus = G_nn_n
if i!=0:
G_in_n_minus = G_nn_n
G_ni_n_minus = G_nn_n
G_ii_n_minus = G_nn_n
# 初始化结束
for j0 in range(length-1-i): # j0为格林函数的右上指标表示当前体系大小即G^{(j0)}
G_nn_n = Green_nn_n(E, eta, h00, h01, G_nn_n_minus)
G_nn_n_minus = G_nn_n
G_ii_n = Green_ii_n(G_ii_n_minus, G_in_n_minus, h01, G_nn_n, G_ni_n_minus) # 需要求的对角分块矩阵
G_ii_n_minus = G_ii_n
G_in_n = Green_in_n(G_in_n_minus, h01, G_nn_n)
G_in_n_minus = G_in_n
G_ni_n = Green_ni_n(G_nn_n, h01, G_ni_n_minus)
G_ni_n_minus = G_ni_n
G_ii_n_array[i, :, :] = G_ii_n_minus
return G_ii_n_array
def Green_nn_n(E, eta, H00, V, G_nn_n_minus): # n>=2
dim = H00.shape[0]
G_nn_n = np.linalg.inv((E+eta*1j)*np.identity(dim)-H00-np.dot(np.dot(V.transpose().conj(), G_nn_n_minus), V))
return G_nn_n
def Green_in_n(G_in_n_minus, V, G_nn_n): # n>=2
G_in_n = np.dot(np.dot(G_in_n_minus, V), G_nn_n)
return G_in_n
def Green_ni_n(G_nn_n, V, G_ni_n_minus): # n>=2
G_ni_n = np.dot(np.dot(G_nn_n, V.transpose().conj()), G_ni_n_minus)
return G_ni_n
def Green_ii_n(G_ii_n_minus, G_in_n_minus, V, G_nn_n, G_ni_n_minus): # n>=i
G_ii_n = G_ii_n_minus+np.dot(np.dot(np.dot(np.dot(G_in_n_minus, V), G_nn_n), V.transpose().conj()),G_ni_n_minus)
return G_ii_n
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,41 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/7650
"""
import numpy as np
import matplotlib.pyplot as plt
from math import *
def hamiltonian(width, length):
h = np.zeros((width*length, width*length))
for i0 in range(length):
for j0 in range(width-1):
h[i0*width+j0, i0*width+j0+1] = 1
h[i0*width+j0+1, i0*width+j0] = 1
for i0 in range(length-1):
for j0 in range(width):
h[i0*width+j0, (i0+1)*width+j0] = 1
h[(i0+1)*width+j0, i0*width+j0] = 1
return h
def main():
width = 2
length = 3
h = hamiltonian(width, length)
E = 0
green = np.linalg.inv((E+1e-2j)*np.eye(width*length)-h)
for i0 in range(length):
# print('G_{'+str(i0+1)+','+str(i0+1)+'}^{('+str(length)+')}:')
# print(green[i0*width+0: i0*width+width, i0*width+0: i0*width+width], '\n')
print('x=', i0+1, ':')
for j0 in range(width):
print(' y=', j0+1, ' ', -np.imag(green[i0*width+j0, i0*width+j0])/pi)
if __name__ == "__main__":
main()