category
This commit is contained in:
@@ -0,0 +1,44 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/10890
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def main():
|
||||
A = np.array([[0, 1, 1, -1], [1, 0, -1, 1], [1, -1, 0, 1], [-1, 1, 1, 0]])
|
||||
eigenvalue, eigenvector = np.linalg.eig(A)
|
||||
print('矩阵:\n', A)
|
||||
print('特征值:\n', eigenvalue)
|
||||
print('特征向量:\n', eigenvector)
|
||||
|
||||
print('\n判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))
|
||||
print('判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose()))
|
||||
|
||||
print('对角化验证:')
|
||||
print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector))
|
||||
|
||||
# 施密斯正交化
|
||||
eigenvector = Schmidt_orthogonalization(eigenvector)
|
||||
|
||||
print('\n施密斯正交化后,特征向量:\n', eigenvector)
|
||||
|
||||
print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))
|
||||
print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose()))
|
||||
|
||||
print('施密斯正交化后,对角化验证:')
|
||||
print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector))
|
||||
|
||||
|
||||
def Schmidt_orthogonalization(eigenvector):
|
||||
num = eigenvector.shape[1]
|
||||
for i in range(num):
|
||||
for i0 in range(i):
|
||||
eigenvector[:, i] = eigenvector[:, i] - eigenvector[:, i0]*np.dot(eigenvector[:, i].transpose().conj(), eigenvector[:, i0])/(np.dot(eigenvector[:, i0].transpose().conj(),eigenvector[:, i0]))
|
||||
eigenvector[:, i] = eigenvector[:, i]/np.linalg.norm(eigenvector[:, i])
|
||||
return eigenvector
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user