category
This commit is contained in:
		| @@ -0,0 +1,39 @@ | ||||
| import tensorflow as tf  # 导入tensorflow | ||||
|  | ||||
| greeting = tf.constant('Hello Google Tensorflow!')  # 定义一个常量 | ||||
|  | ||||
| # 第一种方式 | ||||
| sess = tf.Session()  # 启动一个会话 | ||||
| result = sess.run(greeting)  # 使用会话执行greeting计算模块 | ||||
| print(result)  # 打印显示 | ||||
| sess.close()  # 关闭会话 | ||||
|  | ||||
| # 第二种方式 | ||||
| with tf.Session() as sess:  # 启动一个会话 | ||||
|     print(sess.run(greeting))  # 打印显示 | ||||
|  | ||||
|  | ||||
| # 例子1: | ||||
| matrix1 = tf.constant([[1., 3.]])  # 定义常数矩阵1  tf.constant() | ||||
| matrix2 = tf.constant([[2.], [2.]])  # 定义常数矩阵2  tf.constant() | ||||
| product = tf.matmul(matrix1, matrix2)  # 矩阵乘积  tf.matmul() | ||||
| linear = tf.add(product, tf.constant(2.))  # 矩阵乘积后再加上一个常数  tf.add() | ||||
| with tf.Session() as sess:  # 启动一个会话  tf.Session() | ||||
|     print(sess.run(matrix1))  # 执行语句并打印显示  tf.Session().run | ||||
|     print(sess.run(linear))  # 执行语句并打印显示  tf.Session().run | ||||
| print(linear)  # 直接打印是不能看到计算结果的,因为还未执行,只是一个张量。这里打印显示的结果是:Tensor("Add:0", shape=(1, 1), dtype=float32) | ||||
|  | ||||
|  | ||||
| # 例子2:变量tf.Variable() | ||||
| state = tf.Variable(3, name='counter')  # 变量tf.Variable | ||||
| init = tf.global_variables_initializer()  # 如果定义了变量,后面一定要有这个语句,用来初始化变量。 | ||||
| with tf.Session() as sess: | ||||
|     sess.run(init)  # 变量一定要初始化变量 | ||||
|     print(sess.run(state))  # 执行语句并打印显示 | ||||
|  | ||||
| # 例子3:占位符tf.placeholder(),用来临时占坑,需要用feed_dict来传入数值。 | ||||
| x1 = tf.placeholder(tf.float32) | ||||
| x2 = tf.placeholder(tf.float32) | ||||
| y = x1 + x2 | ||||
| with tf.Session() as sess: | ||||
|     print(sess.run(y, feed_dict={x1: 7, x2: 2})) | ||||
		Reference in New Issue
	
	Block a user