Create example_of_convolutional_neural_network.py
This commit is contained in:
parent
19974d761a
commit
85f2ba5768
@ -0,0 +1,52 @@
|
|||||||
|
"""
|
||||||
|
This code is supported by the website: https://www.guanjihuan.com
|
||||||
|
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/39368
|
||||||
|
"""
|
||||||
|
|
||||||
|
def convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=10, out_channels_2=10, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=0, padding_2=0, pooling=1, pooling_kernel_size=2, pooling_stride=2, input_size=1, hidden_size_1=10, hidden_size_2=10, output_size=1):
|
||||||
|
import torch
|
||||||
|
global model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers
|
||||||
|
class model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(torch.nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.convolutional_layer_1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels_1, kernel_size=kernel_size_1, stride=stride_1, padding=padding_1)
|
||||||
|
self.convolutional_layer_2 = torch.nn.Conv2d(in_channels=out_channels_1, out_channels=out_channels_2, kernel_size=kernel_size_2, stride=stride_2, padding=padding_2)
|
||||||
|
self.pooling_layer = torch.nn.MaxPool2d(kernel_size=pooling_kernel_size, stride=pooling_stride)
|
||||||
|
self.hidden_layer_1 = torch.nn.Linear(input_size, hidden_size_1)
|
||||||
|
self.hidden_layer_2 = torch.nn.Linear(hidden_size_1, hidden_size_2)
|
||||||
|
self.output_layer = torch.nn.Linear(hidden_size_2, output_size)
|
||||||
|
def forward(self, x):
|
||||||
|
if pooling == 1:
|
||||||
|
channel_output_1 = torch.nn.functional.relu(self.pooling_layer(self.convolutional_layer_1(x)))
|
||||||
|
print('第一个卷积和池化后的维度:', channel_output_1.shape)
|
||||||
|
channel_output_2 = torch.nn.functional.relu(self.pooling_layer(self.convolutional_layer_2(channel_output_1)))
|
||||||
|
print('第二个卷积和池化后的维度:', channel_output_1.shape)
|
||||||
|
else:
|
||||||
|
channel_output_1 = torch.nn.functional.relu(self.convolutional_layer_1(x))
|
||||||
|
print('第一个卷积后的维度:', channel_output_1.shape)
|
||||||
|
channel_output_2 = torch.nn.functional.relu(self.convolutional_layer_2(channel_output_1))
|
||||||
|
print('第二个卷积后的维度:', channel_output_1.shape)
|
||||||
|
channel_output_2 = torch.flatten(channel_output_2, 1)
|
||||||
|
print('扁平后的维度:', channel_output_2.shape)
|
||||||
|
hidden_output_1 = torch.nn.functional.relu(self.hidden_layer_1(channel_output_2))
|
||||||
|
print('第一个全连接层后的维度:', hidden_output_1.shape)
|
||||||
|
hidden_output_2 = torch.nn.functional.relu(self.hidden_layer_2(hidden_output_1))
|
||||||
|
print('第二个全连接层后的维度:', hidden_output_1.shape)
|
||||||
|
output = self.output_layer(hidden_output_2)
|
||||||
|
print('输出数据的维度:', output.shape)
|
||||||
|
return output
|
||||||
|
model = model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers()
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
input = torch.randn(15, 1, 28, 28)
|
||||||
|
|
||||||
|
print('【卷积和池化过程的维度变化】')
|
||||||
|
model = convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=10, out_channels_2=10, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=1, padding_2=1, pooling=1, pooling_kernel_size=2, pooling_stride=2, input_size=10*7*7, hidden_size_1=10, hidden_size_2=10, output_size=1)
|
||||||
|
output = model(input)
|
||||||
|
print()
|
||||||
|
|
||||||
|
print('【卷积过程的维度变化(无池化)】')
|
||||||
|
model = convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=10, out_channels_2=10, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=1, padding_2=1, pooling=0, pooling_kernel_size=2, pooling_stride=2, input_size=10*28*28, hidden_size_1=10, hidden_size_2=10, output_size=1)
|
||||||
|
output = model(input)
|
Loading…
x
Reference in New Issue
Block a user