This commit is contained in:
guanjihuan 2024-01-25 23:09:31 +08:00
parent 275a12024d
commit 867d15ae26
3 changed files with 71 additions and 26 deletions

View File

@ -3,7 +3,6 @@ This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/22604
"""
import numpy as np
import cmath
@ -25,24 +24,14 @@ def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=
vector_1 = np.array([np.sqrt(0.5), np.sqrt(0.5)])*cmath.exp(np.random.uniform(0, 1)*1j)
vector_2 = np.array([1, 0])*cmath.exp(np.random.uniform(0, 1)*1j)
print('\n随机规范的原向量:', vector_1)
print('随机规范的原向量:', vector_1)
angle = cmath.phase(vector_1[0])
print('固定规范后的向量方法1', vector_1*cmath.exp(-1j*angle))
vector_1 = find_vector_with_fixed_gauge_by_making_one_component_real(vector_1, precision=0.001)
print('固定规范后的向量:', vector_1)
print('固定规范后的向量方法2', vector_1)
print('\n随机规范的原向量:', vector_2)
angle = cmath.phase(vector_2[0])
print('固定规范后的向量方法1', vector_2*cmath.exp(-1j*angle))
vector_2 = find_vector_with_fixed_gauge_by_making_one_component_real(vector_2, precision=0.001)
print('固定规范后的向量:', vector_2)
# # 可直接使用Guan软件包来调用以上函数https://py.guanjihuan.com。
# # 安装命令pip install --upgrade guan。
# import guan
# print('\n随机规范的原向量', vector_1)
# vector_1 = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_1, precision=0.001)
# print('固定规范后的向量:', vector_1)
# print('\n随机规范的原向量', vector_2)
# vector_2 = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_2, precision=0.001)
# print('固定规范后的向量:', vector_2)
print('固定规范后的向量方法2', vector_2)

View File

@ -69,10 +69,3 @@ vector1, vector2 = rotation_of_degenerate_vectors(eigenvector[:, 0], eigenvector
print()
print(vector1)
print(vector2, '\n')
# # 可直接使用Guan软件包来调用以上函数https://py.guanjihuan.com。
# # 安装命令pip install --upgrade guan。
# import guan
# vector1, vector2 = guan.rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0)
# hamiltonian = guan.hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1)

View File

@ -0,0 +1,63 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38466
"""
import numpy as np
def matrix_00(width):
h00 = np.zeros((width, width))
for width0 in range(width-1):
h00[width0, width0+1] = 1
h00[width0+1, width0] = 1
return h00
def matrix_01(width):
h01 = np.identity(width)
return h01
def main():
width = 2
length = 3
eta = 1e-2
E = 0
h00 = matrix_00(width)
h01 = matrix_01(width)
G_ii_n_array = G_ii_n_with_Dyson_equation_2(width, length, E, eta, h00, h01)
for i0 in range(length):
# print('G_{'+str(i0+1)+','+str(i0+1)+'}^{('+str(length)+')}:')
# print(G_ii_n_array[i0, :, :],'\n')
print('x=', i0+1, ':')
for j0 in range(width):
print(' y=', j0+1, ' ', -np.imag(G_ii_n_array[i0, j0, j0])/np.pi) # 态密度
def G_ii_n_with_Dyson_equation_2(width, length, E, eta, h00, h01):
G_ii_n_array = np.zeros((length, width, width), complex)
G_11_1 = np.linalg.inv((E+eta*1j)*np.identity(width)-h00)
for i in range(length):
G_nn_n_right_minus = G_11_1
G_nn_n_left_minus = G_11_1
if i!=0:
for _ in range(i-1):
G_nn_n_right = Green_nn_n(E, eta, h00, h01, G_nn_n_right_minus)
G_nn_n_right_minus = G_nn_n_right
if i!=length-1:
for _ in range(length-i-2):
G_nn_n_left = Green_nn_n(E, eta, h00, h01, G_nn_n_left_minus)
G_nn_n_left_minus = G_nn_n_left
if i==0:
G_ii_n_array[i, :, :] = np.linalg.inv((E+eta*1j)*np.identity(width)-h00-np.dot(np.dot(h01, G_nn_n_left_minus), h01.transpose().conj()))
elif i!=0 and i!=length-1:
G_ii_n_array[i, :, :] = np.linalg.inv((E+eta*1j)*np.identity(width)-h00-np.dot(np.dot(h01.transpose().conj(), G_nn_n_right_minus), h01)-np.dot(np.dot(h01, G_nn_n_left_minus), h01.transpose().conj()))
elif i==length-1:
G_ii_n_array[i, :, :] = np.linalg.inv((E+eta*1j)*np.identity(width)-h00-np.dot(np.dot(h01.transpose().conj(), G_nn_n_right_minus), h01))
return G_ii_n_array
def Green_nn_n(E, eta, H00, V, G_nn_n_minus):
dim = H00.shape[0]
G_nn_n = np.linalg.inv((E+eta*1j)*np.identity(dim)-H00-np.dot(np.dot(V.transpose().conj(), G_nn_n_minus), V))
return G_nn_n
if __name__ == '__main__':
main()