update
This commit is contained in:
parent
733fb377d5
commit
9e725e467f
@ -0,0 +1,83 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/24059
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import cmath
|
||||
import math
|
||||
import guan
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h[0, 1] = h[1, 0].conj()
|
||||
return h
|
||||
|
||||
|
||||
def main():
|
||||
k_array, berry_curvature_array = calculate_berry_curvature_with_wilson_loop(hamiltonian_function=hamiltonian, k_min=-2*math.pi, k_max=2*math.pi, precision_of_plaquettes=500, precision_of_wilson_loop=1)
|
||||
# k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop(hamiltonian_function=hamiltonian, k_min=-2*math.pi, k_max=2*math.pi, precision_of_plaquettes=500, precision_of_wilson_loop=1)
|
||||
guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array[:, :, 0]), title='Valence Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature')
|
||||
guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array[:, :, 1]), title='Conductance Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature')
|
||||
dim = berry_curvature_array.shape
|
||||
guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :, 0]), title='Valence Band ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0
|
||||
guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :, 1]), title='Conductance Band ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0
|
||||
|
||||
|
||||
def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
|
||||
if np.array(hamiltonian_function(0, 0)).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = np.array(hamiltonian_function(0, 0)).shape[0]
|
||||
delta = (k_max-k_min)/precision_of_plaquettes
|
||||
k_array = np.arange(k_min, k_max, delta)
|
||||
berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex)
|
||||
i00 = 0
|
||||
for kx in k_array:
|
||||
if print_show == 1:
|
||||
print(kx)
|
||||
j00 = 0
|
||||
for ky in k_array:
|
||||
vector_array = []
|
||||
# line_1
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_2
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_3
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_4
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
wilson_loop = 1
|
||||
for i0 in range(len(vector_array)-1):
|
||||
wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
|
||||
wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
|
||||
berry_curvature = np.log(np.diagonal(wilson_loop))/delta/delta*1j
|
||||
berry_curvature_array[j00, i00, :]=berry_curvature
|
||||
j00 += 1
|
||||
i00 += 1
|
||||
return k_array, berry_curvature_array
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,102 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/24059
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import cmath
|
||||
import math
|
||||
import guan
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h[0, 1] = h[1, 0].conj()
|
||||
return h
|
||||
|
||||
|
||||
def main():
|
||||
k_array, berry_curvature_array = calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0], k_min=-2*math.pi, k_max=2*math.pi, precision_of_plaquettes=500, precision_of_wilson_loop=1)
|
||||
# k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0], k_min=-2*math.pi, k_max=2*math.pi, precision_of_plaquettes=500, precision_of_wilson_loop=1)
|
||||
dim = berry_curvature_array.shape
|
||||
guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array), title='Valence Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature')
|
||||
guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :]), title='Valence Band ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0
|
||||
|
||||
k_array, berry_curvature_array = calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0, 1], k_min=-2*math.pi, k_max=2*math.pi, precision_of_plaquettes=500, precision_of_wilson_loop=1)
|
||||
# k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0, 1], k_min=-2*math.pi, k_max=2*math.pi, precision_of_plaquettes=500, precision_of_wilson_loop=1)
|
||||
dim = berry_curvature_array.shape
|
||||
guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array), title='All Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature')
|
||||
guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :]), title='All Band ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0
|
||||
|
||||
|
||||
def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
|
||||
delta = (k_max-k_min)/precision_of_plaquettes
|
||||
k_array = np.arange(k_min, k_max, delta)
|
||||
berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex)
|
||||
i000 = 0
|
||||
for kx in k_array:
|
||||
if print_show == 1:
|
||||
print(kx)
|
||||
j000 = 0
|
||||
for ky in k_array:
|
||||
vector_array = []
|
||||
# line_1
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_2
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_3
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_4
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
wilson_loop = 1
|
||||
dim = len(index_of_bands)
|
||||
for i0 in range(len(vector_array)-1):
|
||||
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||
i01 = 0
|
||||
for dim1 in index_of_bands:
|
||||
i02 = 0
|
||||
for dim2 in index_of_bands:
|
||||
dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
|
||||
i02 += 1
|
||||
i01 += 1
|
||||
det_value = np.linalg.det(dot_matrix)
|
||||
wilson_loop = wilson_loop*det_value
|
||||
dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
|
||||
i01 = 0
|
||||
for dim1 in index_of_bands:
|
||||
i02 = 0
|
||||
for dim2 in index_of_bands:
|
||||
dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
|
||||
i02 += 1
|
||||
i01 += 1
|
||||
det_value = np.linalg.det(dot_matrix_plus)
|
||||
wilson_loop = wilson_loop*det_value
|
||||
berry_curvature = np.log(wilson_loop)/delta/delta*1j
|
||||
berry_curvature_array[j000, i000]=berry_curvature
|
||||
j000 += 1
|
||||
i000 += 1
|
||||
return k_array, berry_curvature_array
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,71 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/24059
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import cmath
|
||||
import guan
|
||||
import math
|
||||
|
||||
|
||||
def hamiltonian(k1, k2, t1=2.82, a=1/sqrt(3)): # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3))
|
||||
h = np.zeros((2, 2))*(1+0j)
|
||||
h[0, 0] = 0.28/2
|
||||
h[1, 1] = -0.28/2
|
||||
h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h[0, 1] = h[1, 0].conj()
|
||||
return h
|
||||
|
||||
|
||||
def main():
|
||||
k_array, berry_curvature_array = calculate_berry_curvature_with_efficient_method(hamiltonian_function=hamiltonian, k_min=-2*math.pi, k_max=2*math.pi, precision=500, print_show=0)
|
||||
# k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method(hamiltonian_function=hamiltonian, k_min=-2*math.pi, k_max=2*math.pi, precision=500, print_show=0)
|
||||
guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array[:, :, 0]), title='Valence Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature')
|
||||
guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array[:, :, 1]), title='Conductance Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature')
|
||||
dim = berry_curvature_array.shape
|
||||
guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :, 0]), title='Valence Band ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0
|
||||
guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :, 1]), title='Conductance Band ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0
|
||||
|
||||
|
||||
def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision=100, print_show=0):
|
||||
if np.array(hamiltonian_function(0, 0)).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = np.array(hamiltonian_function(0, 0)).shape[0]
|
||||
delta = (k_max-k_min)/precision
|
||||
k_array = np.arange(k_min, k_max, delta)
|
||||
berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex)
|
||||
i0 = 0
|
||||
for kx in k_array:
|
||||
if print_show == 1:
|
||||
print(kx)
|
||||
j0 = 0
|
||||
for ky in k_array:
|
||||
H = hamiltonian_function(kx, ky)
|
||||
vector = guan.calculate_eigenvector(H)
|
||||
H_delta_kx = hamiltonian_function(kx+delta, ky)
|
||||
vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
|
||||
H_delta_ky = hamiltonian_function(kx, ky+delta)
|
||||
vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
|
||||
H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
|
||||
vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
|
||||
for i in range(dim):
|
||||
vector_i = vector[:, i]
|
||||
vector_delta_kx_i = vector_delta_kx[:, i]
|
||||
vector_delta_ky_i = vector_delta_ky[:, i]
|
||||
vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
|
||||
Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
|
||||
Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
|
||||
Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
|
||||
Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
|
||||
berry_curvature = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))/delta/delta*1j
|
||||
berry_curvature_array[j0, i0, i] = berry_curvature
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
return k_array, berry_curvature_array
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user