This commit is contained in:
guanjihuan 2021-12-09 11:17:34 +08:00
parent 0c0f2e467d
commit 9f26886125
5 changed files with 317 additions and 0 deletions

View File

@ -0,0 +1,83 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/17984
"""
import numpy as np
import cmath
from math import *
def hamiltonian(kx, ky): # BBH model
# label of atoms in a unit cell
# (2) —— (0)
# | |
# (1) —— (3)
gamma_x = 0.5 # hopping inside one unit cell
lambda_x = 1 # hopping between unit cells
gamma_y = gamma_x
lambda_y = lambda_x
h = np.zeros((4, 4), dtype=complex)
h[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
h[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
h[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
h[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
h[2, 0] = np.conj(h[0, 2])
h[3, 1] = np.conj(h[1, 3])
h[3, 0] = np.conj(h[0, 3])
h[2, 1] = np.conj(h[1, 2])
return h
def main():
Num_kx = 100
Num_ky = 100
kx_array = np.linspace(-pi, pi, Num_kx)
ky_array = np.linspace(-pi, pi, Num_ky)
nu_x_array = []
for ky in ky_array:
vector1_array = []
vector2_array = []
for kx in kx_array:
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian(kx, ky))
if kx != pi:
vector1_array.append(eigenvector[:, 0])
vector2_array.append(eigenvector[:, 1])
else:
# 这里是为了-pi和pi有相同的波函数使得Wilson loop的值与波函数规范无关。
vector1_array.append(vector1_array[0])
vector2_array.append(vector2_array[0])
W_x_k = np.eye(2, dtype=complex)
for i0 in range(Num_kx-1):
F = np.zeros((2, 2), dtype=complex)
F[0, 0] = np.dot(vector1_array[i0+1].transpose().conj(), vector1_array[i0])
F[1, 1] = np.dot(vector2_array[i0+1].transpose().conj(), vector2_array[i0])
F[0, 1] = np.dot(vector1_array[i0+1].transpose().conj(), vector2_array[i0])
F[1, 0] = np.dot(vector2_array[i0+1].transpose().conj(), vector1_array[i0])
W_x_k = np.dot(F, W_x_k)
eigenvalue, eigenvector = np.linalg.eig(W_x_k)
nu_x = np.log(eigenvalue)/2/pi/1j
for i0 in range(2):
if np.real(nu_x[i0]) < 0:
nu_x[i0] += 1
nu_x = np.sort(nu_x)
nu_x_array.append(nu_x.real)
import guan
guan.plot(ky_array, nu_x_array, xlabel='ky', ylabel='nu_x', type='-', y_min=0, y_max=1)
# # Guan安装方法https://py.guanjihuan.com/installation
# # 不安装Guan开源软件包的可把上面两行注释用以下代码代替。
# import matplotlib.pyplot as plt
# fig, ax = plt.subplots()
# plt.subplots_adjust(bottom=0.20, left=0.18)
# ax.grid()
# ax.plot(ky_array, nu_x_array, '-')
# ax.set_xlabel('ky', fontsize=20, fontfamily='Times New Roman')
# ax.set_ylabel('nu_x', fontsize=20, fontfamily='Times New Roman')
# ax.tick_params(labelsize=20)
# labels = ax.get_xticklabels() + ax.get_yticklabels()
# [label.set_fontname('Times New Roman') for label in labels]
# ax.set_ylim(0, 1)
# plt.show()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,44 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/17984
"""
import numpy as np
import cmath
from math import *
import functools
import guan
def hamiltonian(kx, ky): # BBH model
# label of atoms in a unit cell
# (2) —— (0)
# | |
# (1) —— (3)
gamma_x = 0.5 # hopping inside one unit cell
lambda_x = 1 # hopping between unit cells
gamma_y = gamma_x
lambda_y = lambda_x
h = np.zeros((4, 4), dtype=complex)
h[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
h[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
h[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
h[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
h[2, 0] = np.conj(h[0, 2])
h[3, 1] = np.conj(h[1, 3])
h[3, 0] = np.conj(h[0, 3])
h[2, 1] = np.conj(h[1, 2])
return h
def main():
kx = np.arange(-pi, pi, 0.05)
ky = np.arange(-pi, pi, 0.05)
eigenvalue_array = guan.calculate_eigenvalue_with_two_parameters(kx, ky, hamiltonian)
guan.plot_3d_surface(kx, ky, eigenvalue_array, xlabel='kx', ylabel='ky', zlabel='E', title='BBH bands')
hamiltonian0 = functools.partial(hamiltonian, ky=0)
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(kx, hamiltonian0)
guan.plot(kx, eigenvalue_array, xlabel='kx', ylabel='E', title='BBH bands ky=0')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,175 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/17984
"""
import numpy as np
import cmath
from math import *
import guan
def hamiltonian(kx, ky): # BBH model
# label of atoms in a unit cell
# (2) —— (0)
# | |
# (1) —— (3)
gamma_x = 0.5 # hopping inside one unit cell
lambda_x = 1 # hopping between unit cells
gamma_y = gamma_x
lambda_y = lambda_x
x_symmetry_breaking_1 = 0.000000000000 # default (not breaking): zero
x_symmetry_breaking_2 = 1.0000000000001 # default (not breaking): unity
y_symmetry_breaking_1 = 0.000000000000 # default (not breaking): zero
y_symmetry_breaking_2 = 1.000000000000 # default (not breaking): unity
h = np.zeros((4, 4), dtype=complex)
h[0, 0] = x_symmetry_breaking_1
h[1, 1] = y_symmetry_breaking_1
h[2, 2] = y_symmetry_breaking_1
h[3, 3] = x_symmetry_breaking_1
h[0, 2] = (gamma_x+lambda_x*cmath.exp(1j*kx))*y_symmetry_breaking_2
h[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
h[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
h[1, 2] = (-gamma_y-lambda_y*cmath.exp(-1j*ky))*x_symmetry_breaking_2
h[2, 0] = np.conj(h[0, 2])
h[3, 1] = np.conj(h[1, 3])
h[3, 0] = np.conj(h[0, 3])
h[2, 1] = np.conj(h[1, 2])
return h
def main():
Num_kx = 30 # for wilson loop and nested wilson loop
Num_ky = 30 # for wilson loop and nested wilson loop
Num_kx2 = 20 # plot precision
Num_ky2 = 20 # plot precision
kx_array = np.linspace(-pi, pi, Num_kx)
ky_array = np.linspace(-pi, pi, Num_ky)
kx2_array = np.linspace(-pi, pi, Num_kx2)
ky2_array = np.linspace(-pi, pi, Num_ky2)
# Part I: calculate p_y_for_nu_x
p_y_for_nu_x_array = []
for kx in kx2_array:
print('kx=', kx)
w_vector_for_nu1_array = []
vector1_array = []
vector2_array = []
i0 = -1
for ky in ky_array:
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian(kx, ky))
if ky != pi:
vector1_array.append(eigenvector[:, 0])
vector2_array.append(eigenvector[:, 1])
else:
vector1_array.append(vector1_array[0])
vector2_array.append(vector2_array[0])
i0=0
for ky in ky_array:
if ky != pi:
nu_x_vector_1, nu_x_vector_2 = get_nu_x_vector(kx_array, ky)
# the Wannier band subspaces
w_vector_for_nu1 = vector1_array[i0]*nu_x_vector_1[0]+vector2_array[i0]*nu_x_vector_1[1]
w_vector_for_nu1_array.append(w_vector_for_nu1)
else:
w_vector_for_nu1_array.append(w_vector_for_nu1_array[0])
i0 +=1
W_y_k_for_nu_x = 1
for i0 in range(Num_ky-1):
F_for_nu_x = np.dot(w_vector_for_nu1_array[i0+1].transpose().conj(), w_vector_for_nu1_array[i0])
W_y_k_for_nu_x = F_for_nu_x*W_y_k_for_nu_x
p_y_for_nu_x = np.log(W_y_k_for_nu_x)/2/pi/1j
if np.real(p_y_for_nu_x) < 0:
p_y_for_nu_x += 1
p_y_for_nu_x_array.append(p_y_for_nu_x.real)
print('p_y_for_nu_x=', p_y_for_nu_x)
guan.plot(kx2_array, p_y_for_nu_x_array, xlabel='kx', ylabel='p_y_for_nu_x', type='-o', y_min=0, y_max=1)
# Part II: calculate p_x_for_nu_y
p_x_for_nu_y_array = []
for ky in ky2_array:
w_vector_for_nu1_array = []
vector1_array = []
vector2_array = []
for kx in kx_array:
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian(kx, ky))
if kx != pi:
vector1_array.append(eigenvector[:, 0])
vector2_array.append(eigenvector[:, 1])
else:
vector1_array.append(vector1_array[0])
vector2_array.append(vector2_array[0])
i0 = 0
for kx in kx_array:
if kx != pi:
nu_y_vector_1, nu_y_vector_2 = get_nu_y_vector(kx, ky_array)
# the Wannier band subspaces
w_vector_for_nu1 = vector1_array[i0]*nu_y_vector_1[0]+vector2_array[i0]*nu_y_vector_1[1]
w_vector_for_nu1_array.append(w_vector_for_nu1)
else:
w_vector_for_nu1_array.append(w_vector_for_nu1_array[0])
i0 += 1
W_x_k_for_nu_y = 1
for i0 in range(Num_ky-1):
F_for_nu_y = np.dot(w_vector_for_nu1_array[i0+1].transpose().conj(), w_vector_for_nu1_array[i0])
W_x_k_for_nu_y = F_for_nu_y*W_x_k_for_nu_y
p_x_for_nu_y = np.log(W_x_k_for_nu_y)/2/pi/1j
if np.real(p_x_for_nu_y) < 0:
p_x_for_nu_y += 1
p_x_for_nu_y_array.append(p_x_for_nu_y.real)
print('p_x_for_nu_y=', p_x_for_nu_y)
# print(sum(p_x_for_nu_y_array)/len(p_x_for_nu_y_array))
guan.plot(ky2_array, p_x_for_nu_y_array, xlabel='ky', ylabel='p_x_for_nu_y', type='-o', y_min=0, y_max=1)
def get_nu_x_vector(kx_array, ky):
Num_kx = len(kx_array)
vector1_array = []
vector2_array = []
for kx in kx_array:
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian(kx, ky))
if kx != pi:
vector1_array.append(eigenvector[:, 0])
vector2_array.append(eigenvector[:, 1])
else:
vector1_array.append(vector1_array[0])
vector2_array.append(vector2_array[0])
W_x_k = np.eye(2, dtype=complex)
for i0 in range(Num_kx-1):
F = np.zeros((2, 2), dtype=complex)
F[0, 0] = np.dot(vector1_array[i0+1].transpose().conj(), vector1_array[i0])
F[1, 1] = np.dot(vector2_array[i0+1].transpose().conj(), vector2_array[i0])
F[0, 1] = np.dot(vector1_array[i0+1].transpose().conj(), vector2_array[i0])
F[1, 0] = np.dot(vector2_array[i0+1].transpose().conj(), vector1_array[i0])
W_x_k = np.dot(F, W_x_k)
eigenvalue, eigenvector = np.linalg.eig(W_x_k)
nu_x = np.log(eigenvalue)/2/pi/1j
nu_x_vector_1 = eigenvector[:, np.argsort(np.real(nu_x))[0]]
nu_x_vector_2 = eigenvector[:, np.argsort(np.real(nu_x))[1]]
return nu_x_vector_1, nu_x_vector_2
def get_nu_y_vector(kx, ky_array):
Num_ky = len(ky_array)
vector1_array = []
vector2_array = []
for ky in ky_array:
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian(kx, ky))
if ky != pi:
vector1_array.append(eigenvector[:, 0])
vector2_array.append(eigenvector[:, 1])
else:
vector1_array.append(vector1_array[0])
vector2_array.append(vector2_array[0])
W_y_k = np.eye(2, dtype=complex)
for i0 in range(Num_ky-1):
F = np.zeros((2, 2), dtype=complex)
F[0, 0] = np.dot(vector1_array[i0+1].transpose().conj(), vector1_array[i0])
F[1, 1] = np.dot(vector2_array[i0+1].transpose().conj(), vector2_array[i0])
F[0, 1] = np.dot(vector1_array[i0+1].transpose().conj(), vector2_array[i0])
F[1, 0] = np.dot(vector2_array[i0+1].transpose().conj(), vector1_array[i0])
W_y_k = np.dot(F, W_y_k)
eigenvalue, eigenvector = np.linalg.eig(W_y_k)
nu_y = np.log(eigenvalue)/2/pi/1j
nu_y_vector_1 = eigenvector[:, np.argsort(np.real(nu_y))[0]]
nu_y_vector_2 = eigenvector[:, np.argsort(np.real(nu_y))[1]]
return nu_y_vector_1, nu_y_vector_2
if __name__ == '__main__':
main()

View File

@ -0,0 +1,15 @@
if kx == -pi:
vector1_array.append(eigenvector[:, 0])
vector2_array.append(eigenvector[:, 1])
elif kx != pi:
# 这里的判断是为了处理能带简并时最简单情况,只做个对调。
if np.abs(np.dot(vector1_array[-1].transpose().conj(), eigenvector[:, 0]))>0.5:
vector1_array.append(eigenvector[:, 0])
vector2_array.append(eigenvector[:, 1])
else:
vector1_array.append(eigenvector[:, 1])
vector2_array.append(eigenvector[:, 0])
else:
# 这里是为了-pi和pi有相同的波函数使得Wilson loop的值与波函数规范无关。
vector1_array.append(vector1_array[0])
vector2_array.append(vector2_array[0])