From b101731c06d1aa084b6cdc35568095ecccaee4d0 Mon Sep 17 00:00:00 2001 From: guanjihuan <34735497+guanjihuan@users.noreply.github.com> Date: Sat, 7 Aug 2021 19:09:21 +0800 Subject: [PATCH] Update bands_of_SSH_model_with_two_kinds_of_fourier_transform.py --- ...of_SSH_model_with_two_kinds_of_fourier_transform.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/academic_codes/2021.07.29_bands_of_SSH_model_with_two_kinds_of_fourier_transform/bands_of_SSH_model_with_two_kinds_of_fourier_transform.py b/academic_codes/2021.07.29_bands_of_SSH_model_with_two_kinds_of_fourier_transform/bands_of_SSH_model_with_two_kinds_of_fourier_transform.py index b1cee85..b64ddab 100644 --- a/academic_codes/2021.07.29_bands_of_SSH_model_with_two_kinds_of_fourier_transform/bands_of_SSH_model_with_two_kinds_of_fourier_transform.py +++ b/academic_codes/2021.07.29_bands_of_SSH_model_with_two_kinds_of_fourier_transform/bands_of_SSH_model_with_two_kinds_of_fourier_transform.py @@ -5,7 +5,7 @@ import guan v=0.6 w=1 -k = np.linspace(-pi ,pi, 100) +k_array = np.linspace(-pi ,pi, 100) def hamiltonian_1(k): matrix = np.zeros((2, 2), dtype=complex) @@ -19,8 +19,8 @@ def hamiltonian_2(k): matrix[1,0] = v*cmath.exp(-1j*k/2)+w*cmath.exp(1j*k/2) return matrix -E_1 = guan.calculate_eigenvalue_with_one_parameter(k, hamiltonian_1) -guan.plot(k, E_1, xlabel='k', ylabel='E_1') +E_1_array = guan.calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_1) +guan.plot(k_array, E_1_array, xlabel='k', ylabel='E_1') -E_2 = guan.calculate_eigenvalue_with_one_parameter(k, hamiltonian_2) -guan.plot(k, E_2, xlabel='k', ylabel='E_2') \ No newline at end of file +E_2_array = guan.calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_2) +guan.plot(k_array, E_2_array, xlabel='k', ylabel='E_2') \ No newline at end of file