update
This commit is contained in:
69
2019.10.23_Hamiltonian_and_bands_of_graphene/1D_graphene.py
Normal file
69
2019.10.23_Hamiltonian_and_bands_of_graphene/1D_graphene.py
Normal file
@@ -0,0 +1,69 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/408
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from math import *
|
||||
import cmath
|
||||
import functools
|
||||
|
||||
|
||||
def hamiltonian(k, N, M, t1): # graphene哈密顿量(N是条带的宽度参数)
|
||||
# 初始化为零矩阵
|
||||
h00 = np.zeros((4*N, 4*N), dtype=complex)
|
||||
h01 = np.zeros((4*N, 4*N), dtype=complex)
|
||||
|
||||
# 原胞内的跃迁h00
|
||||
for i in range(N):
|
||||
h00[i*4+0, i*4+0] = M
|
||||
h00[i*4+1, i*4+1] = -M
|
||||
h00[i*4+2, i*4+2] = M
|
||||
h00[i*4+3, i*4+3] = -M
|
||||
|
||||
# 最近邻
|
||||
h00[i*4+0, i*4+1] = t1
|
||||
h00[i*4+1, i*4+0] = t1
|
||||
h00[i*4+1, i*4+2] = t1
|
||||
h00[i*4+2, i*4+1] = t1
|
||||
h00[i*4+2, i*4+3] = t1
|
||||
h00[i*4+3, i*4+2] = t1
|
||||
for i in range(N-1):
|
||||
# 最近邻
|
||||
h00[i*4+3, (i+1)*4+0] = t1
|
||||
h00[(i+1)*4+0, i*4+3] = t1
|
||||
|
||||
# 原胞间的跃迁h01
|
||||
for i in range(N):
|
||||
# 最近邻
|
||||
h01[i*4+1, i*4+0] = t1
|
||||
h01[i*4+2, i*4+3] = t1
|
||||
|
||||
matrix = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
|
||||
return matrix
|
||||
|
||||
|
||||
def main():
|
||||
hamiltonian0 = functools.partial(hamiltonian, N=40, M=0, t1=1)
|
||||
k = np.linspace(-pi, pi, 300)
|
||||
plot_bands_one_dimension(k, hamiltonian0)
|
||||
|
||||
|
||||
def plot_bands_one_dimension(k, hamiltonian):
|
||||
dim = hamiltonian(0).shape[0]
|
||||
dim_k = k.shape[0]
|
||||
eigenvalue_k = np.zeros((dim_k, dim))
|
||||
i0 = 0
|
||||
for k0 in k:
|
||||
matrix0 = hamiltonian(k0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(matrix0)
|
||||
eigenvalue_k[i0, :] = np.sort(np.real(eigenvalue[:]))
|
||||
i0 += 1
|
||||
for dim0 in range(dim):
|
||||
plt.plot(k, eigenvalue_k[:, dim0], '-k')
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user