This commit is contained in:
2023-11-07 03:38:46 +08:00
parent 1e7c4c0e68
commit bc3890c25b
212 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,77 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/6260
"""
import numpy as np
import matplotlib.pyplot as plt
from math import * # 引入sqrt(), pi, exp等
import cmath # 要处理复数情况用到cmath.exp()
def hamiltonian(k1, k2, M=0, t1=1, a=1/sqrt(3)): # Haldane哈密顿量(a为原子间距不赋值的话默认为1/sqrt(3)
h0 = np.zeros((2, 2), dtype=complex)
h1 = np.zeros((2, 2), dtype=complex)
h2 = np.zeros((2, 2), dtype=complex)
# 质量项(mass term), 用于打开带隙
h0[0, 0] = M
h0[1, 1] = -M
# 最近邻项
h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
h1[0, 1] = h1[1, 0].conj()
# # 最近邻项也可写成这种形式
# h1[1, 0] = t1+t1*cmath.exp(1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)+t1*cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)
# h1[0, 1] = h1[1, 0].conj()
matrix = h0 + h1
return matrix
def main():
a = 1/sqrt(3)
Gamma0 = np.array([0, 0])
M0 = np.array([0, 2*pi/3/a])
K0 = np.array([2*np.sqrt(3)*pi/9/a, 2*pi/3/a])
kn = 100 # 每个区域的取点数
n = 3 # n个区域K-GammaGamma-M, M-K
k1_array = np.zeros(kn*n)
k2_array = np.zeros(kn*n)
# K-Gamma轴
k1_array[0:kn] = np.linspace(0, K0[0], kn)[::-1] # [::-1]表示反转数组
k2_array[0:kn] = np.linspace(0, K0[1], kn)[::-1]
# Gamma-M轴
k1_array[kn:2*kn] = np.zeros(kn)
k2_array[kn:2*kn] = np.linspace(0, M0[1], kn)
# M-K轴
k1_array[2*kn:3*kn] = np.linspace(0, K0[0], kn)
k2_array[2*kn:3*kn] = np.ones(kn)*M0[1]
i0 = 0
dim = hamiltonian(0, 0).shape[0]
eigenvalue_k = np.zeros((kn*n, dim))
fig, ax = plt.subplots()
for kn0 in range(kn*n):
k1 = k1_array[kn0]
k2 = k2_array[kn0]
eigenvalue, eigenvector = np.linalg.eig(hamiltonian(k1, k2))
eigenvalue_k[i0, :] = np.sort(np.real(eigenvalue[:]))
i0 += 1
for dim0 in range(dim):
plt.plot(range(kn*n), eigenvalue_k[:, dim0], '-k')
plt.ylabel('E')
ax.set_xticks([0, kn, 2*kn, 3*kn])
ax.set_xticklabels(['K', 'Gamma', 'M', 'K'])
plt.xlim(0, n*kn)
plt.grid(axis='x',c='r',linestyle='--')
plt.show()
if __name__ == '__main__':
main()