Create fix_gauge_and_calculate_Chern_number.py

This commit is contained in:
guanjihuan 2022-08-24 10:20:36 +08:00
parent 6ef48f5f76
commit c677fb8bca

View File

@ -0,0 +1,90 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3932
"""
import numpy as np
from math import *
import time
import cmath
def hamiltonian(kx, ky): # 量子反常霍尔QAH模型该参数对应的陈数为2
t1 = 1.0
t2 = 1.0
t3 = 0.5
m = -1.0
matrix = np.zeros((2, 2), dtype=complex)
matrix[0, 1] = 2*t1*cos(kx)-1j*2*t1*cos(ky)
matrix[1, 0] = 2*t1*cos(kx)+1j*2*t1*cos(ky)
matrix[0, 0] = m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky)
matrix[1, 1] = -(m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky))
return matrix
def main():
start_time = time.time()
n = 20 # 积分密度
delta = 1e-9 # 求导的偏离量
chern_number = 0 # 陈数初始化
for kx in np.arange(-pi, pi, 2*pi/n):
for ky in np.arange(-pi, pi, 2*pi/n):
H = hamiltonian(kx, ky)
eigenvalue, eigenvector = np.linalg.eig(H)
vector = eigenvector[:, np.argsort(np.real(eigenvalue))[0]] # 价带波函数
H_delta_kx = hamiltonian(kx+delta, ky)
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx)
vector_delta_kx = eigenvector[:, np.argsort(np.real(eigenvalue))[0]] # 略偏离kx的波函数
H_delta_ky = hamiltonian(kx, ky+delta)
eigenvalue, eigenvector = np.linalg.eig(H_delta_ky)
vector_delta_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[0]] # 略偏离ky的波函数
H_delta_kx_ky = hamiltonian(kx+delta, ky+delta)
eigenvalue, eigenvector = np.linalg.eig(H_delta_kx_ky)
vector_delta_kx_ky = eigenvector[:, np.argsort(np.real(eigenvalue))[0]] # 略偏离kx和ky的波函数
index = np.argmax(np.abs(vector))
precision = 0.0001
vector = find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=precision, index=index)
vector_delta_kx = find_vector_with_fixed_gauge_by_making_one_component_real(vector_delta_kx, precision=precision, index=index)
vector_delta_ky = find_vector_with_fixed_gauge_by_making_one_component_real(vector_delta_ky, precision=precision, index=index)
vector_delta_kx_ky = find_vector_with_fixed_gauge_by_making_one_component_real(vector_delta_kx_ky, precision=precision, index=index)
# 价带的波函数的贝里联络(berry connection) # 求导后内积
A_x = np.dot(vector.transpose().conj(), (vector_delta_kx-vector)/delta) # 贝里联络Axx分量
A_y = np.dot(vector.transpose().conj(), (vector_delta_ky-vector)/delta) # 贝里联络Ayy分量
A_x_delta_ky = np.dot(vector_delta_ky.transpose().conj(), (vector_delta_kx_ky-vector_delta_ky)/delta) # 略偏离ky的贝里联络Ax
A_y_delta_kx = np.dot(vector_delta_kx.transpose().conj(), (vector_delta_kx_ky-vector_delta_kx)/delta) # 略偏离kx的贝里联络Ay
# 贝里曲率(berry curvature)
F = (A_y_delta_kx-A_y)/delta-(A_x_delta_ky-A_x)/delta
# 陈数(chern number)
chern_number = chern_number + F*(2*pi/n)**2
chern_number = chern_number/(2*pi*1j)
print('Chern number = ', chern_number)
end_time = time.time()
print('运行时间(min)=', (end_time-start_time)/60)
def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None):
vector = np.array(vector)
if index == None:
index = np.argmax(np.abs(vector))
sign_pre = np.sign(np.imag(vector[index]))
for phase in np.arange(0, 2*np.pi, precision):
sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase)))
if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre:
break
sign_pre = sign
vector = vector*cmath.exp(1j*phase)
if np.real(vector[index]) < 0:
vector = -vector
return vector
if __name__ == '__main__':
main()