diff --git a/2024.06.03_pytorch_tensor_cat/numpy_concatenate.py b/2024.06.03_pytorch_tensor_cat/numpy_concatenate.py new file mode 100644 index 0000000..ca00f84 --- /dev/null +++ b/2024.06.03_pytorch_tensor_cat/numpy_concatenate.py @@ -0,0 +1,17 @@ +""" +This code is supported by the website: https://www.guanjihuan.com +The newest version of this code is on the web page: https://www.guanjihuan.com/archives/41194 +""" + +import numpy as np + +a = np.random.rand(2, 3) +b = np.random.rand(2, 3) + +# 第一维度的数据合并(需要其他的维度保持一致) +concatenated_1 = np.concatenate((a, b), axis=0) +print(concatenated_1.shape) + +# 第二维度的数据合并(需要其他的维度保持一致) +concatenated_2 = np.concatenate((a, b), axis=1) +print(concatenated_2.shape) \ No newline at end of file diff --git a/2024.06.03_pytorch_tensor_cat/pytorch_cat.py b/2024.06.03_pytorch_tensor_cat/pytorch_cat.py new file mode 100644 index 0000000..59d803b --- /dev/null +++ b/2024.06.03_pytorch_tensor_cat/pytorch_cat.py @@ -0,0 +1,40 @@ +""" +This code is supported by the website: https://www.guanjihuan.com +The newest version of this code is on the web page: https://www.guanjihuan.com/archives/41194 +""" + +import torch + +# 定义两个张量 +tensor1 = torch.randn(2, 3) +tensor2 = torch.randn(2, 3) +print(tensor1) +print(tensor2) +print() + +# 第一维度的数据合并(需要其他的维度保持一致) +result1 = torch.cat((tensor1, tensor2), dim=0) +print(result1) +print(result1.shape) +print() + +# 第二维度的数据合并(需要其他的维度保持一致) +result2 = torch.cat((tensor1, tensor2), dim=1) +print(result2) +print(result2.shape) +print() + + + +# 定义多个张量 +tensor1 = torch.randn(2, 10) +tensor2 = torch.randn(2, 20) +tensor3 = torch.randn(2, 30) +tensor4 = torch.randn(2, 50) + +# 将这些张量放在一个列表中 +tensors = [tensor1, tensor2, tensor3, tensor4] + +# 第二维度的数据合并(确保所有张量的第一维度相同) +result3 = torch.cat(tensors, dim=1) +print(result3.shape) \ No newline at end of file