update
This commit is contained in:
@@ -0,0 +1,322 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/8734
|
||||
|
||||
函数调用目录:
|
||||
1. x, y = read_one_dimensional_data(filename='a')
|
||||
2. x, y, matrix = read_two_dimensional_data(filename='a')
|
||||
3. write_one_dimensional_data(x, y, filename='a')
|
||||
4. write_two_dimensional_data(x, y, matrix, filename='a')
|
||||
5. plot(x, y, xlabel='x', ylabel='y', title='', filename='a')
|
||||
6. plot_3d_surface(x, y, matrix, xlabel='x', ylabel='y', zlabel='z', title='', filename='a')
|
||||
7. plot_contour(x, y, matrix, xlabel='x', ylabel='y', title='', filename='a')
|
||||
8. plot_2d_scatter(x, y, value, xlabel='x', ylabel='y', title='', filename='a')
|
||||
9. plot_3d_surface(x, y, z, value, xlabel='x', ylabel='y', zlabel='z', title='', filename='a')
|
||||
10. creat_animation(image_names, duration_time=0.5, filename='a')
|
||||
11. eigenvalue_array = calculate_eigenvalue_with_one_paramete(x, matrix)
|
||||
12. eigenvalue_array = calculate_eigenvalue_with_two_parameters(x, y, matrix)
|
||||
|
||||
函数对应的功能:
|
||||
1. 读取filename.txt文件中的一维数据y(x)
|
||||
2. 读取filename.txt文件中的二维数据matrix(x,y)
|
||||
3. 把一维数据y(x)写入filename.txt文件
|
||||
4. 把二维数据matrix(x,y)写入filename.txt文件
|
||||
5. 画y(x)图,并保存到filename.jpg文件。具体画图格式可在函数中修改!
|
||||
6. 画3d_surface图,并保存到filename.jpg文件。具体画图格式可在函数中修改!
|
||||
7. 画contour图,并保存到filename.jpg文件。具体画图格式可在函数中修改!
|
||||
8. 画2d_scatter图,并保存到filename.jpg文件。具体画图格式可在函数中修改!
|
||||
9. 画3d_scatter图,并保存到filename.jpg文件。具体画图格式可在函数中修改!
|
||||
10. 制作动画
|
||||
11. 在参数x下,计算matrix函数的本征值eigenvalue_array[:, index]
|
||||
12. 在参数(x,y)下,计算matrix函数的本征值eigenvalue_array[:, :, index]
|
||||
"""
|
||||
|
||||
|
||||
import numpy as np
|
||||
# import os
|
||||
# os.chdir('D:/data')
|
||||
|
||||
|
||||
def main():
|
||||
pass # 读取数据 + 数据处理 + 保存新数据
|
||||
|
||||
|
||||
# 1. 读取filename.txt文件中的一维数据y(x)
|
||||
def read_one_dimensional_data(filename='a'):
|
||||
f = open(filename+'.txt', 'r')
|
||||
text = f.read()
|
||||
f.close()
|
||||
row_list = np.array(text.split('\n'))
|
||||
dim_column = np.array(row_list[0].split()).shape[0]
|
||||
x = np.array([])
|
||||
y = np.array([])
|
||||
for row in row_list:
|
||||
column = np.array(row.split())
|
||||
if column.shape[0] != 0:
|
||||
x = np.append(x, [float(column[0])], axis=0)
|
||||
y_row = np.zeros(dim_column-1)
|
||||
for dim0 in range(dim_column-1):
|
||||
y_row[dim0] = float(column[dim0+1])
|
||||
if np.array(y).shape[0] == 0:
|
||||
y = [y_row]
|
||||
else:
|
||||
y = np.append(y, [y_row], axis=0)
|
||||
return x, y
|
||||
|
||||
|
||||
# 2. 读取filename.txt文件中的二维数据matrix(x,y)
|
||||
def read_two_dimensional_data(filename='a'):
|
||||
f = open(filename+'.txt', 'r')
|
||||
text = f.read()
|
||||
f.close()
|
||||
row_list = np.array(text.split('\n'))
|
||||
dim_column = np.array(row_list[0].split()).shape[0]
|
||||
x = np.array([])
|
||||
y = np.array([])
|
||||
matrix = np.array([])
|
||||
for i0 in range(row_list.shape[0]):
|
||||
column = np.array(row_list[i0].split())
|
||||
if i0 == 0:
|
||||
x_str = column[1::]
|
||||
x = np.zeros(x_str.shape[0])
|
||||
for i00 in range(x_str.shape[0]):
|
||||
x[i00] = float(x_str[i00])
|
||||
elif column.shape[0] != 0:
|
||||
y = np.append(y, [float(column[0])], axis=0)
|
||||
matrix_row = np.zeros(dim_column-1)
|
||||
for dim0 in range(dim_column-1):
|
||||
matrix_row[dim0] = float(column[dim0+1])
|
||||
if np.array(matrix).shape[0] == 0:
|
||||
matrix = [matrix_row]
|
||||
else:
|
||||
matrix = np.append(matrix, [matrix_row], axis=0)
|
||||
return x, y, matrix
|
||||
|
||||
|
||||
# 3. 把一维数据y(x)写入filename.txt文件
|
||||
def write_one_dimensional_data(x, y, filename='a'):
|
||||
with open(filename+'.txt', 'w') as f:
|
||||
i0 = 0
|
||||
for x0 in x:
|
||||
f.write(str(x0)+' ')
|
||||
if len(y.shape) == 1:
|
||||
f.write(str(y[i0])+'\n')
|
||||
elif len(y.shape) == 2:
|
||||
for j0 in range(y.shape[1]):
|
||||
f.write(str(y[i0, j0])+' ')
|
||||
f.write('\n')
|
||||
i0 += 1
|
||||
|
||||
|
||||
# 4. 把二维数据matrix(x,y)写入filename.txt文件
|
||||
def write_two_dimensional_data(x, y, matrix, filename='a'):
|
||||
with open(filename+'.txt', 'w') as f:
|
||||
f.write('0 ')
|
||||
for x0 in x:
|
||||
f.write(str(x0)+' ')
|
||||
f.write('\n')
|
||||
i0 = 0
|
||||
for y0 in y:
|
||||
f.write(str(y0))
|
||||
j0 = 0
|
||||
for x0 in x:
|
||||
f.write(' '+str(matrix[i0, j0])+' ')
|
||||
j0 += 1
|
||||
f.write('\n')
|
||||
i0 += 1
|
||||
|
||||
|
||||
# 5. 画y(x)图,并保存到filename.jpg文件。具体画图格式可在函数中修改。
|
||||
def plot(x, y, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0):
|
||||
import matplotlib.pyplot as plt
|
||||
fig, ax = plt.subplots()
|
||||
plt.subplots_adjust(bottom=0.20, left=0.18)
|
||||
ax.plot(x, y, '-o')
|
||||
ax.grid()
|
||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.tick_params(labelsize=20)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
if save == 1:
|
||||
plt.savefig(filename+'.jpg', dpi=300)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
|
||||
# 6. 画3d_surface图,并保存到filename.jpg文件。具体画图格式可在函数中修改。
|
||||
def plot_3d_surface(x, y, matrix, xlabel='x', ylabel='y', zlabel='z', title='', filename='a', show=1, save=0):
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
from matplotlib.ticker import LinearLocator
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
|
||||
plt.subplots_adjust(bottom=0.1, right=0.65)
|
||||
x, y = np.meshgrid(x, y)
|
||||
if len(matrix.shape) == 2:
|
||||
surf = ax.plot_surface(x, y, matrix, cmap=cm.coolwarm, linewidth=0, antialiased=False)
|
||||
elif len(matrix.shape) == 3:
|
||||
for i0 in range(matrix.shape[2]):
|
||||
surf = ax.plot_surface(x, y, matrix[:,:,i0], cmap=cm.coolwarm, linewidth=0, antialiased=False)
|
||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.zaxis.set_major_locator(LinearLocator(5))
|
||||
ax.zaxis.set_major_formatter('{x:.2f}')
|
||||
ax.tick_params(labelsize=15)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
cax = plt.axes([0.80, 0.15, 0.05, 0.75])
|
||||
cbar = fig.colorbar(surf, cax=cax)
|
||||
cbar.ax.tick_params(labelsize=15)
|
||||
for l in cbar.ax.yaxis.get_ticklabels():
|
||||
l.set_family('Times New Roman')
|
||||
if save == 1:
|
||||
plt.savefig(filename+'.jpg', dpi=300)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
|
||||
# 7. 画plot_contour图,并保存到filename.jpg文件。具体画图格式可在函数中修改。
|
||||
def plot_contour(x, y, matrix, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0):
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
from matplotlib.ticker import LinearLocator
|
||||
fig, ax = plt.subplots()
|
||||
plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16)
|
||||
x, y = np.meshgrid(x, y)
|
||||
contour = ax.contourf(x,y,matrix,cmap='jet')
|
||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.tick_params(labelsize=15)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
cax = plt.axes([0.78, 0.17, 0.08, 0.71])
|
||||
cbar = fig.colorbar(contour, cax=cax)
|
||||
cbar.ax.tick_params(labelsize=15)
|
||||
for l in cbar.ax.yaxis.get_ticklabels():
|
||||
l.set_family('Times New Roman')
|
||||
if save == 1:
|
||||
plt.savefig(filename+'.jpg', dpi=300)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
# 8. 画2d_scatter图,并保存到filename.jpg文件。具体画图格式可在函数中修改!
|
||||
def plot_2d_scatter(x, y, value, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0):
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.axes._axes import _log as matplotlib_axes_logger
|
||||
matplotlib_axes_logger.setLevel('ERROR')
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
plt.subplots_adjust(bottom=0.2, right=0.8, left=0.2)
|
||||
for i in range(np.array(x).shape[0]):
|
||||
ax.scatter(x[i], y[i], marker='o', s=100*value[i], c=(1,0,0))
|
||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.tick_params(labelsize=15)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
if save == 1:
|
||||
plt.savefig(filename+'.jpg', dpi=300)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
# 9. 画3d_scatter图,并保存到filename.jpg文件。具体画图格式可在函数中修改!
|
||||
def plot_3d_scatter(x, y, z, value, xlabel='x', ylabel='y', zlabel='z', title='', filename='a', show=1, save=0):
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import LinearLocator
|
||||
from matplotlib.axes._axes import _log as matplotlib_axes_logger
|
||||
matplotlib_axes_logger.setLevel('ERROR')
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
plt.subplots_adjust(bottom=0.1, right=0.8)
|
||||
for i in range(np.array(x).shape[0]):
|
||||
ax.scatter(x[i], y[i], z[i], marker='o', s=int(100*value[i]), c=(1,0,0))
|
||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman')
|
||||
ax.tick_params(labelsize=15)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
if save == 1:
|
||||
plt.savefig(filename+'.jpg', dpi=300)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
||||
# 10. 制作动画
|
||||
def creat_animation(image_names, duration_time=0.5, filename='a'):
|
||||
import imageio
|
||||
images = []
|
||||
for name in image_names:
|
||||
image = name+'.jpg'
|
||||
im = imageio.imread(image)
|
||||
images.append(im)
|
||||
imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration_time) # durantion是延迟时间
|
||||
|
||||
|
||||
# 11. 在参数x下,计算matrix函数的本征值eigenvalue_array[:, index]
|
||||
def calculate_eigenvalue_with_one_parameter(x, matrix):
|
||||
dim_x = np.array(x).shape[0]
|
||||
i0 = 0
|
||||
if np.array(matrix(0)).shape==():
|
||||
eigenvalue_array = np.zeros((dim_x, 1))
|
||||
for x0 in x:
|
||||
matrix0 = matrix(x0)
|
||||
eigenvalue_array[i0, 0] = np.real(matrix0)
|
||||
i0 += 1
|
||||
else:
|
||||
dim = np.array(matrix(0)).shape[0]
|
||||
eigenvalue_array = np.zeros((dim_x, dim))
|
||||
for x0 in x:
|
||||
matrix0 = matrix(x0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(matrix0)
|
||||
eigenvalue_array[i0, :] = np.sort(np.real(eigenvalue[:]))
|
||||
i0 += 1
|
||||
return eigenvalue_array
|
||||
|
||||
|
||||
# 12. 在参数(x,y)下,计算matrix函数的本征值eigenvalue_array[:, :, index]
|
||||
def calculate_eigenvalue_with_two_parameters(x, y, matrix):
|
||||
dim_x = np.array(x).shape[0]
|
||||
dim_y = np.array(y).shape[0]
|
||||
if np.array(matrix(0,0)).shape==():
|
||||
eigenvalue_array = np.zeros((dim_y, dim_x, 1))
|
||||
i0 = 0
|
||||
for y0 in y:
|
||||
j0 = 0
|
||||
for x0 in x:
|
||||
matrix0 = matrix(x0, y0)
|
||||
eigenvalue_array[i0, j0, 0] = np.real(matrix0)
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
else:
|
||||
dim = np.array(matrix(0, 0)).shape[0]
|
||||
eigenvalue_array = np.zeros((dim_y, dim_x, dim))
|
||||
i0 = 0
|
||||
for y0 in y:
|
||||
j0 = 0
|
||||
for x0 in x:
|
||||
matrix0 = matrix(x0, y0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(matrix0)
|
||||
eigenvalue_array[i0, j0, :] = np.sort(np.real(eigenvalue[:]))
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
return eigenvalue_array
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user