Create matrix_running_time.py
This commit is contained in:
parent
33e1dc5118
commit
e7e929ff08
100
2025.03.08_matrix_running_time/matrix_running_time.py
Normal file
100
2025.03.08_matrix_running_time/matrix_running_time.py
Normal file
@ -0,0 +1,100 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/45275
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
import sys
|
||||
from numba import jit
|
||||
|
||||
n_array = np.concatenate((np.arange(1000, 10000, 1000), np.arange(10000, 40000, 10000)))
|
||||
print(f'n_array={n_array}\n')
|
||||
|
||||
@jit
|
||||
def numba_test(C, n):
|
||||
for i0 in range(n):
|
||||
for j0 in range(n):
|
||||
C[i0, j0] = np.random.rand()
|
||||
return C
|
||||
|
||||
for n in n_array:
|
||||
print(f'n={n}')
|
||||
|
||||
A = np.random.rand(n, n)
|
||||
B = np.random.rand(n, n)
|
||||
C = np.random.rand(n, n)
|
||||
|
||||
# 矩阵占用内存
|
||||
size = sys.getsizeof(C)
|
||||
print(f'矩阵占用内存: {size/(1024*1024):.2f} MB')
|
||||
|
||||
# 矩阵的迹
|
||||
start_time = time.time()
|
||||
trace_A = np.trace(A)
|
||||
trace_time = time.time() - start_time
|
||||
print(f"矩阵的迹时间: {trace_time:.3f} 秒")
|
||||
|
||||
# 矩阵转置
|
||||
start_time = time.time()
|
||||
A_T = A.T
|
||||
transpose_time = time.time() - start_time
|
||||
print(f"矩阵转置时间: {transpose_time:.3f} 秒")
|
||||
|
||||
# 矩阵加法
|
||||
start_time = time.time()
|
||||
C = A + B
|
||||
add_time = time.time() - start_time
|
||||
print(f"矩阵加法时间: {add_time:.3f} 秒")
|
||||
|
||||
# numba for 循环赋值
|
||||
start_time = time.time()
|
||||
numba_test(C, n)
|
||||
create_time = time.time() - start_time
|
||||
print(f"numba for 循环赋值时间: {create_time:.3f} 秒")
|
||||
|
||||
# 矩阵创建
|
||||
start_time = time.time()
|
||||
C = np.random.rand(n, n)
|
||||
create_time = time.time() - start_time
|
||||
print(f"矩阵创建时间: {create_time:.3f} 秒")
|
||||
|
||||
# for 循环赋值
|
||||
start_time = time.time()
|
||||
for i0 in range(n):
|
||||
for j0 in range(n):
|
||||
C[i0, j0] = np.random.rand()
|
||||
create_time = time.time() - start_time
|
||||
print(f"for 循环赋值时间: {create_time:.3f} 秒")
|
||||
|
||||
# 矩阵乘法
|
||||
start_time = time.time()
|
||||
C = np.dot(A, B)
|
||||
multiply_time = time.time() - start_time
|
||||
print(f"矩阵乘法时间: {multiply_time:.3f} 秒")
|
||||
|
||||
# 矩阵求逆
|
||||
start_time = time.time()
|
||||
inv_A = np.linalg.inv(A)
|
||||
inv_time = time.time() - start_time
|
||||
print(f"矩阵求逆时间: {inv_time:.3f} 秒")
|
||||
|
||||
# 矩阵的秩
|
||||
start_time = time.time()
|
||||
rank_A = np.linalg.matrix_rank(A)
|
||||
rank_time = time.time() - start_time
|
||||
print(f"矩阵的秩时间: {rank_time:.3f} 秒")
|
||||
|
||||
# 矩阵的特征值
|
||||
start_time = time.time()
|
||||
eigenvalues_A = np.linalg.eigvals(A)
|
||||
eigen_time = time.time() - start_time
|
||||
print(f"矩阵特征值时间: {eigen_time:.3f} 秒")
|
||||
|
||||
# 矩阵的特征值和特征向量
|
||||
start_time = time.time()
|
||||
eigenvalues_A, eigenvector_A = np.linalg.eig(A)
|
||||
eigen_time = time.time() - start_time
|
||||
print(f"矩阵特征值和特征向量时间: {eigen_time:.3f} 秒")
|
||||
|
||||
print()
|
Loading…
x
Reference in New Issue
Block a user