Create matrix_running_time.py

This commit is contained in:
guanjihuan 2025-03-08 01:06:34 +08:00
parent 33e1dc5118
commit e7e929ff08

View File

@ -0,0 +1,100 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/45275
"""
import numpy as np
import time
import sys
from numba import jit
n_array = np.concatenate((np.arange(1000, 10000, 1000), np.arange(10000, 40000, 10000)))
print(f'n_array={n_array}\n')
@jit
def numba_test(C, n):
for i0 in range(n):
for j0 in range(n):
C[i0, j0] = np.random.rand()
return C
for n in n_array:
print(f'n={n}')
A = np.random.rand(n, n)
B = np.random.rand(n, n)
C = np.random.rand(n, n)
# 矩阵占用内存
size = sys.getsizeof(C)
print(f'矩阵占用内存: {size/(1024*1024):.2f} MB')
# 矩阵的迹
start_time = time.time()
trace_A = np.trace(A)
trace_time = time.time() - start_time
print(f"矩阵的迹时间: {trace_time:.3f}")
# 矩阵转置
start_time = time.time()
A_T = A.T
transpose_time = time.time() - start_time
print(f"矩阵转置时间: {transpose_time:.3f}")
# 矩阵加法
start_time = time.time()
C = A + B
add_time = time.time() - start_time
print(f"矩阵加法时间: {add_time:.3f}")
# numba for 循环赋值
start_time = time.time()
numba_test(C, n)
create_time = time.time() - start_time
print(f"numba for 循环赋值时间: {create_time:.3f}")
# 矩阵创建
start_time = time.time()
C = np.random.rand(n, n)
create_time = time.time() - start_time
print(f"矩阵创建时间: {create_time:.3f}")
# for 循环赋值
start_time = time.time()
for i0 in range(n):
for j0 in range(n):
C[i0, j0] = np.random.rand()
create_time = time.time() - start_time
print(f"for 循环赋值时间: {create_time:.3f}")
# 矩阵乘法
start_time = time.time()
C = np.dot(A, B)
multiply_time = time.time() - start_time
print(f"矩阵乘法时间: {multiply_time:.3f}")
# 矩阵求逆
start_time = time.time()
inv_A = np.linalg.inv(A)
inv_time = time.time() - start_time
print(f"矩阵求逆时间: {inv_time:.3f}")
# 矩阵的秩
start_time = time.time()
rank_A = np.linalg.matrix_rank(A)
rank_time = time.time() - start_time
print(f"矩阵的秩时间: {rank_time:.3f}")
# 矩阵的特征值
start_time = time.time()
eigenvalues_A = np.linalg.eigvals(A)
eigen_time = time.time() - start_time
print(f"矩阵特征值时间: {eigen_time:.3f}")
# 矩阵的特征值和特征向量
start_time = time.time()
eigenvalues_A, eigenvector_A = np.linalg.eig(A)
eigen_time = time.time() - start_time
print(f"矩阵特征值和特征向量时间: {eigen_time:.3f}")
print()