diff --git a/academic_codes/2022.08.13_Berry_curvature_distribution_in_function_form/Berry_curvature_distribution_with_the_efficient_method_for_degenerate_case_(function_form).py b/academic_codes/2022.08.13_Berry_curvature_distribution_in_function_form/Berry_curvature_distribution_with_the_efficient_method_for_degenerate_case_(function_form).py index b17350c..b5d622e 100644 --- a/academic_codes/2022.08.13_Berry_curvature_distribution_in_function_form/Berry_curvature_distribution_with_the_efficient_method_for_degenerate_case_(function_form).py +++ b/academic_codes/2022.08.13_Berry_curvature_distribution_in_function_form/Berry_curvature_distribution_with_the_efficient_method_for_degenerate_case_(function_form).py @@ -63,46 +63,46 @@ def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamilton eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) dim = len(index_of_bands) det_value = 1 - # first dot + # first dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: - dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) + dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix - # second dot + # second dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: - dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) + dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix - # third dot + # third dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: - dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) + dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix - # four dot + # four dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: - dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) + dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))