Create Landau_levels_of_honeycomb_lattice.py
This commit is contained in:
parent
65cae60edb
commit
f125b94ac3
@ -0,0 +1,101 @@
|
|||||||
|
"""
|
||||||
|
This code is supported by the website: https://www.guanjihuan.com
|
||||||
|
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/23834
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from math import *
|
||||||
|
import cmath
|
||||||
|
import functools
|
||||||
|
|
||||||
|
def hamiltonian(kx, ky, B, N, M, t1, a): # 在磁场下的二维石墨烯,取磁元胞
|
||||||
|
h00 = np.zeros((4*N, 4*N), dtype=complex)
|
||||||
|
h01 = np.zeros((4*N, 4*N), dtype=complex)
|
||||||
|
# 原胞内的跃迁h00
|
||||||
|
for i in range(N):
|
||||||
|
h00[i*4+0, i*4+0] = M
|
||||||
|
h00[i*4+1, i*4+1] = -M
|
||||||
|
h00[i*4+2, i*4+2] = M
|
||||||
|
h00[i*4+3, i*4+3] = -M
|
||||||
|
# 最近邻
|
||||||
|
h00[i*4+0, i*4+1] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+1/4*a)*(np.sqrt(3)/2*a))
|
||||||
|
h00[i*4+1, i*4+0] = np.conj(h00[i*4+0, i*4+1])
|
||||||
|
h00[i*4+1, i*4+2] = t1
|
||||||
|
h00[i*4+2, i*4+1] = np.conj(h00[i*4+1, i*4+2])
|
||||||
|
h00[i*4+2, i*4+3] = t1*cmath.exp(2*pi*1j*B*(3*a*i+7/4*a)*(np.sqrt(3)/2)*a)
|
||||||
|
h00[i*4+3, i*4+2] = np.conj(h00[i*4+2, i*4+3])
|
||||||
|
for i in range(N-1):
|
||||||
|
# 最近邻
|
||||||
|
h00[i*4+3, (i+1)*4+0] = t1
|
||||||
|
h00[(i+1)*4+0, i*4+3] = t1
|
||||||
|
h00[4*(N-1)+3, 0] = t1*cmath.exp(1j*ky)
|
||||||
|
h00[0, 4*(N-1)+3] = t1*cmath.exp(-1j*ky)
|
||||||
|
# 原胞间的跃迁h01
|
||||||
|
for i in range(N):
|
||||||
|
# 最近邻
|
||||||
|
h01[i*4+1, i*4+0] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+1/4*a)*(np.sqrt(3)/2*a))
|
||||||
|
h01[i*4+2, i*4+3] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+7/4*a)*(np.sqrt(3)/2*a))
|
||||||
|
matrix = h00 + h01*cmath.exp(1j*kx) + h01.transpose().conj()*cmath.exp(-1j*kx)
|
||||||
|
return matrix
|
||||||
|
|
||||||
|
def main():
|
||||||
|
N = 50
|
||||||
|
a = 1
|
||||||
|
|
||||||
|
hamiltonian_function = functools.partial(hamiltonian, ky=0, B=1/(3*np.sqrt(3)/2*a*a*N), N=N, M=0, t1=1, a=a)
|
||||||
|
k_array = np.linspace(-pi, pi, 100)
|
||||||
|
|
||||||
|
eigenvalue_array = calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_function)
|
||||||
|
plot(k_array, eigenvalue_array, xlabel='kx', ylabel='E', title='ky=0 N=%i Φ/Φ_0=1/(3*np.sqrt(3)/2*a*a*N)'%N, style='k-')
|
||||||
|
|
||||||
|
# import guan
|
||||||
|
# eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_function)
|
||||||
|
# guan.plot(k_array, eigenvalue_array, xlabel='kx', ylabel='E', title='ky=0 N=%i Φ/Φ_0=1/(3*np.sqrt(3)/2*a*a*N)'%N, style='k-')
|
||||||
|
|
||||||
|
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
|
||||||
|
dim_x = np.array(x_array).shape[0]
|
||||||
|
i0 = 0
|
||||||
|
if np.array(hamiltonian_function(0)).shape==():
|
||||||
|
eigenvalue_array = np.zeros((dim_x, 1))
|
||||||
|
for x0 in x_array:
|
||||||
|
hamiltonian = hamiltonian_function(x0)
|
||||||
|
eigenvalue_array[i0, 0] = np.real(hamiltonian)
|
||||||
|
i0 += 1
|
||||||
|
else:
|
||||||
|
dim = np.array(hamiltonian_function(0)).shape[0]
|
||||||
|
eigenvalue_array = np.zeros((dim_x, dim))
|
||||||
|
for x0 in x_array:
|
||||||
|
if print_show==1:
|
||||||
|
print(x0)
|
||||||
|
hamiltonian = hamiltonian_function(x0)
|
||||||
|
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
||||||
|
eigenvalue_array[i0, :] = eigenvalue
|
||||||
|
i0 += 1
|
||||||
|
return eigenvalue_array
|
||||||
|
|
||||||
|
def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left)
|
||||||
|
ax.grid()
|
||||||
|
ax.tick_params(labelsize=labelsize)
|
||||||
|
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
||||||
|
[label.set_fontname('Times New Roman') for label in labels]
|
||||||
|
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
|
||||||
|
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||||
|
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||||
|
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||||
|
if y_min!=None or y_max!=None:
|
||||||
|
if y_min==None:
|
||||||
|
y_min=min(y_array)
|
||||||
|
if y_max==None:
|
||||||
|
y_max=max(y_array)
|
||||||
|
ax.set_ylim(y_min, y_max)
|
||||||
|
if save == 1:
|
||||||
|
plt.savefig(filename+'.'+format, dpi=dpi)
|
||||||
|
if show == 1:
|
||||||
|
plt.show()
|
||||||
|
plt.close('all')
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user