Create Landau_levels_of_honeycomb_lattice.py

This commit is contained in:
guanjihuan 2022-08-03 21:21:39 +08:00
parent 65cae60edb
commit f125b94ac3

View File

@ -0,0 +1,101 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/23834
"""
import numpy as np
from math import *
import cmath
import functools
def hamiltonian(kx, ky, B, N, M, t1, a): # 在磁场下的二维石墨烯,取磁元胞
h00 = np.zeros((4*N, 4*N), dtype=complex)
h01 = np.zeros((4*N, 4*N), dtype=complex)
# 原胞内的跃迁h00
for i in range(N):
h00[i*4+0, i*4+0] = M
h00[i*4+1, i*4+1] = -M
h00[i*4+2, i*4+2] = M
h00[i*4+3, i*4+3] = -M
# 最近邻
h00[i*4+0, i*4+1] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+1/4*a)*(np.sqrt(3)/2*a))
h00[i*4+1, i*4+0] = np.conj(h00[i*4+0, i*4+1])
h00[i*4+1, i*4+2] = t1
h00[i*4+2, i*4+1] = np.conj(h00[i*4+1, i*4+2])
h00[i*4+2, i*4+3] = t1*cmath.exp(2*pi*1j*B*(3*a*i+7/4*a)*(np.sqrt(3)/2)*a)
h00[i*4+3, i*4+2] = np.conj(h00[i*4+2, i*4+3])
for i in range(N-1):
# 最近邻
h00[i*4+3, (i+1)*4+0] = t1
h00[(i+1)*4+0, i*4+3] = t1
h00[4*(N-1)+3, 0] = t1*cmath.exp(1j*ky)
h00[0, 4*(N-1)+3] = t1*cmath.exp(-1j*ky)
# 原胞间的跃迁h01
for i in range(N):
# 最近邻
h01[i*4+1, i*4+0] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+1/4*a)*(np.sqrt(3)/2*a))
h01[i*4+2, i*4+3] = t1*cmath.exp(-2*pi*1j*B*(3*a*i+7/4*a)*(np.sqrt(3)/2*a))
matrix = h00 + h01*cmath.exp(1j*kx) + h01.transpose().conj()*cmath.exp(-1j*kx)
return matrix
def main():
N = 50
a = 1
hamiltonian_function = functools.partial(hamiltonian, ky=0, B=1/(3*np.sqrt(3)/2*a*a*N), N=N, M=0, t1=1, a=a)
k_array = np.linspace(-pi, pi, 100)
eigenvalue_array = calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_function)
plot(k_array, eigenvalue_array, xlabel='kx', ylabel='E', title='ky=0 N=%i Φ/Φ_0=1/(3*np.sqrt(3)/2*a*a*N)'%N, style='k-')
# import guan
# eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_function)
# guan.plot(k_array, eigenvalue_array, xlabel='kx', ylabel='E', title='ky=0 N=%i Φ/Φ_0=1/(3*np.sqrt(3)/2*a*a*N)'%N, style='k-')
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
dim_x = np.array(x_array).shape[0]
i0 = 0
if np.array(hamiltonian_function(0)).shape==():
eigenvalue_array = np.zeros((dim_x, 1))
for x0 in x_array:
hamiltonian = hamiltonian_function(x0)
eigenvalue_array[i0, 0] = np.real(hamiltonian)
i0 += 1
else:
dim = np.array(hamiltonian_function(0)).shape[0]
eigenvalue_array = np.zeros((dim_x, dim))
for x0 in x_array:
if print_show==1:
print(x0)
hamiltonian = hamiltonian_function(x0)
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
eigenvalue_array[i0, :] = eigenvalue
i0 += 1
return eigenvalue_array
def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left)
ax.grid()
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels()
[label.set_fontname('Times New Roman') for label in labels]
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y_min=min(y_array)
if y_max==None:
y_max=max(y_array)
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
if __name__ == '__main__':
main()