Compare commits

...

2 Commits

Author SHA1 Message Date
5327c384ee update 2025-04-04 01:17:00 +08:00
02a3f2b279 update 2025-04-03 23:46:51 +08:00
10 changed files with 39 additions and 277 deletions

View File

@ -1,7 +1,7 @@
import guan # https://py.guanjihuan.com | install: pip install --upgrade guan
import numpy as np
cpu_num_array = np.arange(1, 17)
cpu_num_array = np.arange(1, 9)
sh_filename = 'task'
task_name = 'test'

View File

@ -6,22 +6,14 @@ The newest version of this code is on the web page: https://www.guanjihuan.com/a
import numpy as np
import time
n = 5000
A = np.random.rand(n, n)
B = np.random.rand(n, n)
n = 1000
test_times = 20
# 矩阵行列式
start_time = time.time()
for _ in range(test_times):
det_A = np.linalg.det(A)
det_time = (time.time() - start_time)/test_times
print(f"矩阵行列式时间: {det_time:.3f}")
# 矩阵乘法
start_time = time.time()
for _ in range(test_times):
A = np.random.rand(n, n)
B = np.random.rand(n, n)
C = np.dot(A, B)
multiply_time = (time.time() - start_time)/test_times
print(f"矩阵乘法时间: {multiply_time:.3f}")
@ -29,27 +21,15 @@ print(f"矩阵乘法时间: {multiply_time:.3f} 秒")
# 矩阵求逆
start_time = time.time()
for _ in range(test_times):
A = np.random.rand(n, n)
inv_A = np.linalg.inv(A)
inv_time = (time.time() - start_time)/test_times
print(f"矩阵求逆时间: {inv_time:.3f}")
# 矩阵的秩
start_time = time.time()
for _ in range(test_times):
rank_A = np.linalg.matrix_rank(A)
rank_time = (time.time() - start_time)/test_times
print(f"矩阵的秩时间: {rank_time:.3f}")
# 矩阵的特征值
start_time = time.time()
for _ in range(test_times):
eigenvalues_A = np.linalg.eigvals(A)
eigen_time = (time.time() - start_time)/test_times
print(f"矩阵特征值时间: {eigen_time:.3f}")
# 矩阵的特征值和特征向量
start_time = time.time()
for _ in range(test_times):
A = np.random.rand(n, n)
eigenvalues_A, eigenvector_A = np.linalg.eig(A)
eigen_time = (time.time() - start_time)/test_times
print(f"矩阵特征值和特征向量时间: {eigen_time:.3f}")

View File

@ -1,74 +0,0 @@
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
cpu_num_array = np.arange(1, 17)
# n = 5000
time_array_1 = [3.999, 1.679, 1.257, 0.985, 0.699, 0.562, 0.534, 0.525, 0.510, 0.424, 0.409, 0.380, 0.372, 0.339, 0.334, 0.293]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.show()
time_0 = time_array_1[0]
for i0 in range(len(time_array_1)):
time_array_1[i0] = time_0/time_array_1[i0]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()
time_array_2 = [6.059, 2.723, 2.190, 1.577, 1.169, 0.939, 1.231, 0.958, 1.070, 0.793, 1.208, 0.760, 0.709, 0.677, 0.671, 0.906]
fig, ax = plt.subplots()
ax.set_title('np.linalg.inv()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_2, '-o', )
plt.show()
time_0 = time_array_2[0]
for i0 in range(len(time_array_2)):
time_array_2[i0] = time_0/time_array_2[i0]
fig, ax = plt.subplots()
ax.set_title('np.linalg.inv()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_2, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()
time_array_3 = [95.896, 49.107, 41.703, 38.915, 32.468, 25.804, 40.716, 31.072, 40.045, 26.397, 38.557, 28.684, 28.267, 26.840, 27.381, 34.494]
fig, ax = plt.subplots()
ax.set_title('np.linalg.eig()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_3, '-o', )
plt.show()
time_0 = time_array_3[0]
for i0 in range(len(time_array_3)):
time_array_3[i0] = time_0/time_array_3[i0]
fig, ax = plt.subplots()
ax.set_title('np.linalg.eig()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_3, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()

View File

@ -1,160 +0,0 @@
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import numpy as np
cpu_num_array = np.arange(1, 17)
# n = 30000
time_array_1 = [1164.522, 648.587, 444.488, 647.176, 298.652, 256.809, 239.630, 231.987, 475.781, 383.823, 410.388, 172.702, 163.727, 144.307, 121.530, 109.636]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.show()
time_0 = time_array_1[0]
for i0 in range(len(time_array_1)):
time_array_1[i0] = time_0/time_array_1[i0]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()
# n = 20000
time_array_1 = [365.730, 209.475, 151.805, 120.739, 104.102, 88.944, 80.475, 70.486, 67.500, 61.404, 53.837, 51.219, 51.542, 84.641, 80.378, 30.629]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.show()
time_0 = time_array_1[0]
for i0 in range(len(time_array_1)):
time_array_1[i0] = time_0/time_array_1[i0]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()
# n = 10000
time_array_1 = [62.485, 36.402, 25.316, 21.785, 17.619, 15.412, 16.718, 10.874, 9.588, 7.004, 6.733, 7.251, 7.248, 4.979, 4.889, 7.037]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.show()
time_0 = time_array_1[0]
for i0 in range(len(time_array_1)):
time_array_1[i0] = time_0/time_array_1[i0]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()
# n = 500
time_array_1 = [0.004053801, 0.002605676, 0.001590664, 0.001103345, 0.001266495, 0.000954730, 0.000930616, 0.000779754, 0.000970088, 0.000651353, 0.000918634, 0.000538209, 0.000716934, 0.000521487, 0.001165715, 0.000764804 ]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.show()
time_0 = time_array_1[0]
for i0 in range(len(time_array_1)):
time_array_1[i0] = time_0/time_array_1[i0]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()
# n = 300
time_array_1 = [0.001144045, 0.000554059, 0.000413136, 0.000385368, 0.000287431, 0.000270178, 0.000268842, 0.000535453, 0.000219275, 0.000219676, 0.000186116, 0.000522058, 0.000146788, 0.000134041, 0.000558532, 0.000135554]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.show()
time_0 = time_array_1[0]
for i0 in range(len(time_array_1)):
time_array_1[i0] = time_0/time_array_1[i0]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()
# n = 100
time_array_1 = [0.000041899, 0.000104283, 0.000138595, 0.000038628, 0.000039540, 0.000029726, 0.000101140, 0.000023468, 0.000061134, 0.000225034, 0.000033439, 0.000075225, 0.000057184, 0.000040229, 0.000104894, 0.000041510]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Time (s)')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.show()
time_0 = time_array_1[0]
for i0 in range(len(time_array_1)):
time_array_1[i0] = time_0/time_array_1[i0]
fig, ax = plt.subplots()
ax.set_title('np.dot()')
ax.set_xlabel('Number of CPU cores')
ax.set_ylabel('Ratio')
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.plot(cpu_num_array, time_array_1, '-o', )
plt.plot(cpu_num_array, cpu_num_array, '--r')
plt.show()

View File

@ -1,7 +1,7 @@
import numpy as np
import os
cpu_num_array = np.arange(1, 17)
cpu_num_array = np.arange(1, 9)
for cpu_num in cpu_num_array:
os.system(f'qsub task_{cpu_num}.sh')

View File

@ -8,15 +8,13 @@ import time
import pickle
n = 1000
A = np.random.rand(n, n)
B = np.random.rand(n, n)
test_times = 20
# 矩阵乘法
start_time = time.time()
for _ in range(test_times):
A = np.random.rand(n, n)
B = np.random.rand(n, n)
C = np.dot(A, B)
multiply_time = (time.time() - start_time)/test_times
with open(f'multiply_time_n={n}.pkl', 'wb') as f:
@ -25,6 +23,7 @@ with open(f'multiply_time_n={n}.pkl', 'wb') as f:
# 矩阵求逆
start_time = time.time()
for _ in range(test_times):
A = np.random.rand(n, n)
inv_A = np.linalg.inv(A)
inv_time = (time.time() - start_time)/test_times
with open(f'inv_time_n={n}.pkl', 'wb') as f:
@ -33,6 +32,7 @@ with open(f'inv_time_n={n}.pkl', 'wb') as f:
# 矩阵的特征值和特征向量
start_time = time.time()
for _ in range(test_times):
A = np.random.rand(n, n)
eigenvalues_A, eigenvector_A = np.linalg.eig(A)
eigen_time = (time.time() - start_time)/test_times
with open(f'eigen_time_n={n}.pkl', 'wb') as f:

View File

@ -40,10 +40,12 @@ program main
implicit none
integer, allocatable :: index1(:)
integer n, i, j, info, ierr, stage, start, end_val, step, count_start, count_end, count_rate
integer n, i, j, info, ierr, stage, start, end_val, step, count_start, count_end, count_rate, test_0, test_times
double precision, allocatable :: A(:,:)
double precision time_used
test_times = 20
!
do stage = 1, 3
select case(stage)
@ -55,9 +57,9 @@ program main
start = 2000
end_val = 10000
step = 1000
case(3) ! 20000-5000010000
case(3) ! 20000-3000010000
start = 20000
end_val = 50000
end_val = 30000
step = 10000
end select
@ -65,21 +67,25 @@ program main
do while (n <= end_val)
allocate(index1(n), stat=ierr)
call generate_random_matrix(n, A)
call system_clock(count_start, count_rate)
call getrf(A, index1, info); call getri(A, index1, info) ! 使 getrf getri A
test_0 = 1
do while (test_0 <= test_times)
call generate_random_matrix(n, A)
call getrf(A, index1, info); call getri(A, index1, info) ! 使 getrf getri A
deallocate(A, stat=ierr)
test_0 = test_0 + 1
end do
call system_clock(count_end)
!
if (count_rate > 0) then
time_used = real(count_end - count_start) / real(count_rate)
time_used = real(count_end - count_start) / real(count_rate) / test_times
write(*, '(a, I6, a, f12.6, a)') 'n = ', n, ' 的计算时间: ', time_used, ' 秒'
else
write(*,*) "无法获取计算时间"
endif
deallocate(A, stat=ierr)
deallocate(index1, stat=ierr)
n = n + step

View File

@ -8,11 +8,13 @@ import time
n_array = np.concatenate((np.arange(100, 1000, 100),
np.arange(1000, 10000, 1000),
np.arange(10000, 60000, 10000)))
np.arange(10000, 40000, 10000)))
for n in n_array:
A = np.random.rand(n, n)
test_times = 20
start_time = time.time()
inv_A = np.linalg.inv(A)
inv_time = time.time() - start_time
for _ in range(test_times):
A = np.random.rand(n, n)
inv_A = np.linalg.inv(A)
inv_time = (time.time() - start_time)/test_times
print(f"n = {n} 的计算时间: {inv_time:.6f}")

View File

@ -0,0 +1,4 @@
#!/bin/sh
#PBS -N fortran
#PBS -l nodes=1:ppn=24
./a.exe

View File

@ -0,0 +1,4 @@
#!/bin/sh
#PBS -N python
#PBS -l nodes=1:ppn=24
python a.py