""" This code is supported by the website: https://www.guanjihuan.com The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3888 """ import numpy as np import matplotlib.pyplot as plt import time def matrix_00(width=10): # 电极元胞内跃迁,width不赋值时默认为10 h00 = np.zeros((width, width)) for width0 in range(width-1): h00[width0, width0+1] = 1 h00[width0+1, width0] = 1 return h00 def matrix_01(width=10): # 电极元胞间跃迁,width不赋值时默认为10 h01 = np.identity(width) return h01 def matrix_LC(width=10, length=300): # 左电极跳到中心区 h_LC = np.zeros((width, width*length)) for width0 in range(width): h_LC[width0, width0] = 1 return h_LC def matrix_CR(width=10, length=300): # 中心区跳到右电极 h_CR = np.zeros((width*length, width)) for width0 in range(width): h_CR[width*(length-1)+width0, width0] = 1 return h_CR def matrix_center(width=10, length=300): # 中心区哈密顿量 hamiltonian = np.zeros((width*length, width*length)) for length0 in range(length-1): for width0 in range(width): hamiltonian[width*length0+width0, width*(length0+1)+width0] = 1 # 长度方向跃迁 hamiltonian[width*(length0+1)+width0, width*length0+width0] = 1 for length0 in range(length): for width0 in range(width-1): hamiltonian[width*length0+width0, width*length0+width0+1] = 1 # 宽度方向跃迁 hamiltonian[width*length0+width0+1, width*length0+width0] = 1 # 中间加势垒 for j0 in range(6): for i0 in range(6): hamiltonian[width*(int(length/2)-3+j0)+int(width/2)-3+i0, width*(int(length/2)-3+j0)+int(width/2)-3+i0]= 1e8 return hamiltonian def main(): start_time = time.time() fermi_energy = 0 width = 60 length = 100 h00 = matrix_00(width) h01 = matrix_01(width) G_n = Green_n(fermi_energy+1j*1e-9, h00, h01, width, length) # 下面是提取数据并画图 direction_x = np.zeros((width, length)) direction_y = np.zeros((width, length)) for length0 in range(length-1): for width0 in range(width): direction_x[width0, length0] = G_n[width*length0+width0, width*(length0+1)+width0] for length0 in range(length): for width0 in range(width-1): direction_y[width0, length0] = G_n[width*length0+width0, width*length0+width0+1] # print(direction_x) # print(direction_y) X, Y = np.meshgrid(range(length), range(width)) plt.quiver(X, Y, direction_x, direction_y) plt.show() end_time = time.time() print('运行时间=', end_time-start_time) def transfer_matrix(fermi_energy, h00, h01, dim): # 转移矩阵T。dim是传递矩阵h00和h01的维度 transfer = np.zeros((2*dim, 2*dim), dtype=complex) transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) # np.dot()等效于np.matmul() transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) transfer[dim:2*dim, 0:dim] = np.identity(dim) transfer[dim:2*dim, dim:2*dim] = 0 # a:b代表 a <= x < b return transfer # 返回转移矩阵 def green_function_lead(fermi_energy, h00, h01, dim): # 电极的表面格林函数 transfer = transfer_matrix(fermi_energy, h00, h01, dim) eigenvalue, eigenvector = np.linalg.eig(transfer) ind = np.argsort(np.abs(eigenvalue)) temp = np.zeros((2*dim, 2*dim))*(1+0j) i0 = 0 for ind0 in ind: temp[:, i0] = eigenvector[:, ind0] i0 += 1 s1 = temp[dim:2*dim, 0:dim] s2 = temp[0:dim, 0:dim] s3 = temp[dim:2*dim, dim:2*dim] s4 = temp[0:dim, dim:2*dim] right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) return right_lead_surface, left_lead_surface # 返回右电极的表面格林函数和左电极的表面格林函数 def self_energy_lead(fermi_energy, h00, h01, width, length): # 电极的自能 h_LC = matrix_LC(width, length) h_CR = matrix_CR(width, length) right_lead_surface, left_lead_surface = green_function_lead(fermi_energy, h00, h01, width) right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj()) left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) return right_self_energy, left_self_energy # 返回右电极的自能和左电极的自能 def Green_n(fermi_energy, h00, h01, width, length): # 计算G_n right_self_energy, left_self_energy = self_energy_lead(fermi_energy, h00, h01, width, length) hamiltonian = matrix_center(width, length) green = np.linalg.inv(fermi_energy*np.identity(width*length)-hamiltonian-left_self_energy-right_self_energy) right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*1j left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*1j G_n = np.imag(np.dot(np.dot(green, left_self_energy), green.transpose().conj())) return G_n if __name__ == '__main__': main()