""" This code is supported by the website: https://www.guanjihuan.com The newest version of this code is on the web page: https://www.guanjihuan.com/archives/10890 """ import numpy as np def main(): A = np.array([[0, 1, 1, -1], [1, 0, -1, 1], [1, -1, 0, 1], [-1, 1, 1, 0]]) eigenvalue, eigenvector = np.linalg.eig(A) print('矩阵:\n', A) print('特征值:\n', eigenvalue) print('特征向量:\n', eigenvector) print('\n判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector)) print('判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose())) print('对角化验证:') print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector)) # 施密斯正交化 eigenvector = Schmidt_orthogonalization(eigenvector) print('\n施密斯正交化后,特征向量:\n', eigenvector) print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector)) print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose())) print('施密斯正交化后,对角化验证:') print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector)) def Schmidt_orthogonalization(eigenvector): num = eigenvector.shape[1] for i in range(num): for i0 in range(i): eigenvector[:, i] = eigenvector[:, i] - eigenvector[:, i0]*np.dot(eigenvector[:, i].transpose().conj(), eigenvector[:, i0])/(np.dot(eigenvector[:, i0].transpose().conj(),eigenvector[:, i0])) eigenvector[:, i] = eigenvector[:, i]/np.linalg.norm(eigenvector[:, i]) return eigenvector if __name__ == '__main__': main()