import torch input_data = torch.tensor([[7, 3, 5, 2], [8, 7, 1, 6], [4, 9, 3, 9], [0, 8, 4, 5]], dtype=torch.float32).unsqueeze(0).unsqueeze(0) # 两次 .unsqueeze(0) 分别是添加批次和通道维度 max_pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) output_data = max_pool(input_data) print("Input:\n", input_data) print("Output after max pooling:\n", output_data) print('输入数据的形状: ', input_data.shape) print('输出数据的形状: ', output_data.shape)