""" This code is supported by the website: https://www.guanjihuan.com The newest version of this code is on the web page: https://www.guanjihuan.com/archives/43720 """ import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))]) # 数据转换(将图片转换为 Tensor 并进行归一化处理,均值和标准差为 0.5) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) # 下载训练数据集 test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) # 下载测试数据集 # 训练函数 def train(model, train_loader, criterion, optimizer, num_epochs=5): for epoch in range(num_epochs): model.train() running_loss = 0.0 correct = 0 total = 0 for images, labels in train_loader: # print(images.shape) optimizer.zero_grad() # 清除以前的梯度 outputs = model(images) # 前向传播 loss = criterion(outputs, labels) loss.backward() # 反向传播和优化 optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs, 1) # 计算准确率 total += labels.size(0) correct += (predicted == labels).sum().item() avg_loss = running_loss / len(train_loader) accuracy = 100 * correct / total print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}, Accuracy: {accuracy:.2f}%') # 测试函数 def test(model, test_loader): model.eval() # 设置为评估模式 correct = 0 total = 0 with torch.no_grad(): # 禁用梯度计算 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print(f'Test Accuracy: {accuracy:.2f}%') # 训练和测试 def train_and_test(model, train_loader, test_loader): criterion = nn.CrossEntropyLoss() # 交叉熵损失 optimizer = optim.Adam(model.parameters(), lr=0.001) train(model, train_loader, criterion, optimizer, num_epochs=10) test(model, test_loader) # 扁平化数据,并重建 DataLoader(用于全连接神经网络输入端的数据处理) def flatten_data(data_loader): images_array = [] labels_array = [] for images, labels in data_loader: images = torch.flatten(images, start_dim=1) # 除去batch维度后,其他维度展平 images_array.append(images) labels_array.append(labels) images_array = torch.cat(images_array, dim=0) labels_array = torch.cat(labels_array, dim=0) dataset_new = TensorDataset(images_array, labels_array) loader_new = DataLoader(dataset_new, batch_size=64, shuffle=True) return loader_new # 数据加载器 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 扁平化数据 train_loader_new = flatten_data(train_loader) test_loader_new = flatten_data(test_loader) # 安装软件包:pip install --upgrade guan import guan hidden_size = 64 print('---全连接神经网络模型(包含一个隐藏层)---') model = guan.fully_connected_neural_network_with_one_hidden_layer(input_size=28*28, hidden_size=hidden_size, output_size=10, activation='relu') train_and_test(model, train_loader_new, test_loader_new) print('---全连接神经网络模型(包含两个隐藏层)---') model = guan.fully_connected_neural_network_with_two_hidden_layers(input_size=28*28, hidden_size_1=hidden_size, hidden_size_2=hidden_size, output_size=10, activation_1='relu', activation_2='relu') train_and_test(model, train_loader_new, test_loader_new) print('---全连接神经网络模型(包含三个隐藏层)---') model = guan.fully_connected_neural_network_with_three_hidden_layers(input_size=28*28, hidden_size_1=hidden_size, hidden_size_2=hidden_size, hidden_size_3=hidden_size, output_size=10, activation_1='relu', activation_2='relu', activation_3='relu') train_and_test(model, train_loader_new, test_loader_new) print('---卷积神经网络模型(包含两个卷积层和两个全连接层)---') model = guan.convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=32, out_channels_2=64, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=1, padding_2=1, pooling=1, pooling_kernel_size=2, pooling_stride=2, input_size=7*7*64, hidden_size_1=hidden_size, hidden_size_2=hidden_size, output_size=10) train_and_test(model, train_loader, test_loader)