121 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			121 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding=utf-8
 | 
						|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
 | 
						|
#
 | 
						|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
						|
# and OPT implementations in this library. It has been modified from its
 | 
						|
# original forms to accommodate minor architectural differences compared
 | 
						|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
""" InternLM model configuration"""
 | 
						|
 | 
						|
from transformers.utils import logging
 | 
						|
from transformers.configuration_utils import PretrainedConfig
 | 
						|
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
 | 
						|
 | 
						|
 | 
						|
class InternLMConfig(PretrainedConfig):
 | 
						|
    r"""
 | 
						|
    This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate an InternLM
 | 
						|
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
 | 
						|
    defaults will yield a similar configuration to that of the InternLM-7B.
 | 
						|
 | 
						|
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
 | 
						|
    documentation from [`PretrainedConfig`] for more information.
 | 
						|
 | 
						|
 | 
						|
    Args:
 | 
						|
        vocab_size (`int`, *optional*, defaults to 32000):
 | 
						|
            Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
 | 
						|
            `inputs_ids` passed when calling [`InternLMModel`]
 | 
						|
        hidden_size (`int`, *optional*, defaults to 4096):
 | 
						|
            Dimension of the hidden representations.
 | 
						|
        intermediate_size (`int`, *optional*, defaults to 11008):
 | 
						|
            Dimension of the MLP representations.
 | 
						|
        num_hidden_layers (`int`, *optional*, defaults to 32):
 | 
						|
            Number of hidden layers in the Transformer encoder.
 | 
						|
        num_attention_heads (`int`, *optional*, defaults to 32):
 | 
						|
            Number of attention heads for each attention layer in the Transformer encoder.
 | 
						|
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
 | 
						|
            The non-linear activation function (function or string) in the decoder.
 | 
						|
        max_position_embeddings (`int`, *optional*, defaults to 2048):
 | 
						|
            The maximum sequence length that this model might ever be used with. Typically set this to something large
 | 
						|
            just in case (e.g., 512 or 1024 or 2048).
 | 
						|
        initializer_range (`float`, *optional*, defaults to 0.02):
 | 
						|
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
 | 
						|
        rms_norm_eps (`float`, *optional*, defaults to 1e-12):
 | 
						|
            The epsilon used by the rms normalization layers.
 | 
						|
        use_cache (`bool`, *optional*, defaults to `True`):
 | 
						|
            Whether or not the model should return the last key/values attentions (not used by all models). Only
 | 
						|
            relevant if `config.is_decoder=True`.
 | 
						|
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
 | 
						|
            Whether to tie weight embeddings
 | 
						|
        Example:
 | 
						|
 | 
						|
    ```python
 | 
						|
    >>> from transformers import InternLMModel, InternLMConfig
 | 
						|
 | 
						|
    >>> # Initializing a InternLM internlm-7b style configuration
 | 
						|
    >>> configuration = InternLMConfig()
 | 
						|
 | 
						|
    >>> # Initializing a model from the internlm-7b style configuration
 | 
						|
    >>> model = InternLMModel(configuration)
 | 
						|
 | 
						|
    >>> # Accessing the model configuration
 | 
						|
    >>> configuration = model.config
 | 
						|
    ```"""
 | 
						|
    model_type = "internlm"
 | 
						|
    _auto_class = "AutoConfig"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab_size=103168,
 | 
						|
        hidden_size=4096,
 | 
						|
        intermediate_size=11008,
 | 
						|
        num_hidden_layers=32,
 | 
						|
        num_attention_heads=32,
 | 
						|
        hidden_act="silu",
 | 
						|
        max_position_embeddings=2048,
 | 
						|
        initializer_range=0.02,
 | 
						|
        rms_norm_eps=1e-6,
 | 
						|
        use_cache=True,
 | 
						|
        pad_token_id=0,
 | 
						|
        bos_token_id=1,
 | 
						|
        eos_token_id=2,
 | 
						|
        tie_word_embeddings=False,
 | 
						|
        bias=True,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        self.vocab_size = vocab_size
 | 
						|
        self.max_position_embeddings = max_position_embeddings
 | 
						|
        self.hidden_size = hidden_size
 | 
						|
        self.intermediate_size = intermediate_size
 | 
						|
        self.num_hidden_layers = num_hidden_layers
 | 
						|
        self.num_attention_heads = num_attention_heads
 | 
						|
        self.hidden_act = hidden_act
 | 
						|
        self.initializer_range = initializer_range
 | 
						|
        self.rms_norm_eps = rms_norm_eps
 | 
						|
        self.use_cache = use_cache
 | 
						|
        self.bias = bias
 | 
						|
        super().__init__(
 | 
						|
            pad_token_id=pad_token_id,
 | 
						|
            bos_token_id=bos_token_id,
 | 
						|
            eos_token_id=eos_token_id,
 | 
						|
            tie_word_embeddings=tie_word_embeddings,
 | 
						|
            **kwargs,
 | 
						|
        )
 |