242 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding=utf-8
 | 
						|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
 | 
						|
#
 | 
						|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
 | 
						|
# and OPT implementations in this library. It has been modified from its
 | 
						|
# original forms to accommodate minor architectural differences compared
 | 
						|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
"""Tokenization classes for IntermLM."""
 | 
						|
import os
 | 
						|
from shutil import copyfile
 | 
						|
from typing import Any, Dict, List, Optional, Tuple
 | 
						|
 | 
						|
import sentencepiece as spm
 | 
						|
 | 
						|
from transformers.tokenization_utils import PreTrainedTokenizer
 | 
						|
from transformers.utils import logging
 | 
						|
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)
 | 
						|
 | 
						|
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
 | 
						|
 | 
						|
PRETRAINED_VOCAB_FILES_MAP = {}
 | 
						|
 | 
						|
 | 
						|
class InternLMTokenizer(PreTrainedTokenizer):
 | 
						|
    """
 | 
						|
    Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
 | 
						|
 | 
						|
    Args:
 | 
						|
        vocab_file (`str`):
 | 
						|
            Path to the vocabulary file.
 | 
						|
    """
 | 
						|
 | 
						|
    vocab_files_names = VOCAB_FILES_NAMES
 | 
						|
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
 | 
						|
    model_input_names = ["input_ids", "attention_mask"]
 | 
						|
    _auto_class = "AutoTokenizer"
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab_file,
 | 
						|
        unk_token="<unk>",
 | 
						|
        bos_token="<s>",
 | 
						|
        eos_token="</s>",
 | 
						|
        pad_token="</s>",
 | 
						|
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
 | 
						|
        add_bos_token=True,
 | 
						|
        add_eos_token=False,
 | 
						|
        decode_with_prefix_space=False,
 | 
						|
        clean_up_tokenization_spaces=False,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
 | 
						|
        super().__init__(
 | 
						|
            bos_token=bos_token,
 | 
						|
            eos_token=eos_token,
 | 
						|
            unk_token=unk_token,
 | 
						|
            pad_token=pad_token,
 | 
						|
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
 | 
						|
            **kwargs,
 | 
						|
        )
 | 
						|
        self.vocab_file = vocab_file
 | 
						|
        self.add_bos_token = add_bos_token
 | 
						|
        self.add_eos_token = add_eos_token
 | 
						|
        self.decode_with_prefix_space = decode_with_prefix_space
 | 
						|
        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
 | 
						|
        self.sp_model.Load(vocab_file)
 | 
						|
        self._no_prefix_space_tokens = None
 | 
						|
 | 
						|
        """ Initialisation"""
 | 
						|
 | 
						|
    @property
 | 
						|
    def no_prefix_space_tokens(self):
 | 
						|
        if self._no_prefix_space_tokens is None:
 | 
						|
            vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
 | 
						|
            self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
 | 
						|
        return self._no_prefix_space_tokens
 | 
						|
 | 
						|
    @property
 | 
						|
    def vocab_size(self):
 | 
						|
        """Returns vocab size"""
 | 
						|
        return self.sp_model.get_piece_size()
 | 
						|
 | 
						|
    @property
 | 
						|
    def bos_token_id(self) -> Optional[int]:
 | 
						|
        return self.sp_model.bos_id()
 | 
						|
 | 
						|
    @property
 | 
						|
    def eos_token_id(self) -> Optional[int]:
 | 
						|
        return self.sp_model.eos_id()
 | 
						|
 | 
						|
    def get_vocab(self):
 | 
						|
        """Returns vocab as a dict"""
 | 
						|
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
 | 
						|
        vocab.update(self.added_tokens_encoder)
 | 
						|
        return vocab
 | 
						|
 | 
						|
    def _tokenize(self, text):
 | 
						|
        """Returns a tokenized string."""
 | 
						|
        return self.sp_model.encode(text, out_type=str)
 | 
						|
 | 
						|
    def _convert_token_to_id(self, token):
 | 
						|
        """Converts a token (str) in an id using the vocab."""
 | 
						|
        return self.sp_model.piece_to_id(token)
 | 
						|
 | 
						|
    def _convert_id_to_token(self, index):
 | 
						|
        """Converts an index (integer) in a token (str) using the vocab."""
 | 
						|
        token = self.sp_model.IdToPiece(index)
 | 
						|
        return token
 | 
						|
 | 
						|
    def _maybe_add_prefix_space(self, tokens, decoded):
 | 
						|
        if tokens and tokens[0] not in self.no_prefix_space_tokens:
 | 
						|
            return " " + decoded
 | 
						|
        else:
 | 
						|
            return decoded
 | 
						|
 | 
						|
    def convert_tokens_to_string(self, tokens):
 | 
						|
        """Converts a sequence of tokens (string) in a single string."""
 | 
						|
        current_sub_tokens = []
 | 
						|
        out_string = ""
 | 
						|
        prev_is_special = False
 | 
						|
        for token in tokens:
 | 
						|
            # make sure that special tokens are not decoded using sentencepiece model
 | 
						|
            if token in self.all_special_tokens:
 | 
						|
                if not prev_is_special:
 | 
						|
                    out_string += " "
 | 
						|
                out_string += self.sp_model.decode(current_sub_tokens) + token
 | 
						|
                prev_is_special = True
 | 
						|
                current_sub_tokens = []
 | 
						|
            else:
 | 
						|
                current_sub_tokens.append(token)
 | 
						|
                prev_is_special = False
 | 
						|
        out_string += self.sp_model.decode(current_sub_tokens)
 | 
						|
        out_string = self.clean_up_tokenization(out_string)
 | 
						|
        out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
 | 
						|
        return out_string[1:]
 | 
						|
 | 
						|
    def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
 | 
						|
        """
 | 
						|
        Save the vocabulary and special tokens file to a directory.
 | 
						|
 | 
						|
        Args:
 | 
						|
            save_directory (`str`):
 | 
						|
                The directory in which to save the vocabulary.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            `Tuple(str)`: Paths to the files saved.
 | 
						|
        """
 | 
						|
        if not os.path.isdir(save_directory):
 | 
						|
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
 | 
						|
            return
 | 
						|
        out_vocab_file = os.path.join(
 | 
						|
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
 | 
						|
        )
 | 
						|
 | 
						|
        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
 | 
						|
            copyfile(self.vocab_file, out_vocab_file)
 | 
						|
        elif not os.path.isfile(self.vocab_file):
 | 
						|
            with open(out_vocab_file, "wb") as fi:
 | 
						|
                content_spiece_model = self.sp_model.serialized_model_proto()
 | 
						|
                fi.write(content_spiece_model)
 | 
						|
 | 
						|
        return (out_vocab_file,)
 | 
						|
 | 
						|
    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
 | 
						|
        if self.add_bos_token:
 | 
						|
            bos_token_ids = [self.bos_token_id]
 | 
						|
        else:
 | 
						|
            bos_token_ids = []
 | 
						|
 | 
						|
        output = bos_token_ids + token_ids_0
 | 
						|
 | 
						|
        if token_ids_1 is not None:
 | 
						|
            output = output + token_ids_1
 | 
						|
 | 
						|
        if self.add_eos_token:
 | 
						|
            output = output + [self.eos_token_id]
 | 
						|
 | 
						|
        return output
 | 
						|
 | 
						|
    def get_special_tokens_mask(
 | 
						|
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
 | 
						|
    ) -> List[int]:
 | 
						|
        """
 | 
						|
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
 | 
						|
        special tokens using the tokenizer `prepare_for_model` method.
 | 
						|
 | 
						|
        Args:
 | 
						|
            token_ids_0 (`List[int]`):
 | 
						|
                List of IDs.
 | 
						|
            token_ids_1 (`List[int]`, *optional*):
 | 
						|
                Optional second list of IDs for sequence pairs.
 | 
						|
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
 | 
						|
                Whether or not the token list is already formatted with special tokens for the model.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
 | 
						|
        """
 | 
						|
        if already_has_special_tokens:
 | 
						|
            return super().get_special_tokens_mask(
 | 
						|
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
 | 
						|
            )
 | 
						|
 | 
						|
        if token_ids_1 is None:
 | 
						|
            return [1] + ([0] * len(token_ids_0)) + [1]
 | 
						|
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
 | 
						|
 | 
						|
    def create_token_type_ids_from_sequences(
 | 
						|
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
 | 
						|
    ) -> List[int]:
 | 
						|
        """
 | 
						|
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
 | 
						|
        use of token type ids, therefore a list of zeros is returned.
 | 
						|
 | 
						|
        Args:
 | 
						|
            token_ids_0 (`List[int]`):
 | 
						|
                List of IDs.
 | 
						|
            token_ids_1 (`List[int]`, *optional*):
 | 
						|
                Optional second list of IDs for sequence pairs.
 | 
						|
 | 
						|
        Returns:
 | 
						|
            `List[int]`: List of zeros.
 | 
						|
        """
 | 
						|
        eos = [self.eos_token_id]
 | 
						|
 | 
						|
        if token_ids_1 is None:
 | 
						|
            return len(token_ids_0 + eos) * [0]
 | 
						|
        return len(token_ids_0 + eos + token_ids_1 + eos) * [0] |