105 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
This code is supported by the website: https://www.guanjihuan.com
 | 
						||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
 | 
						||
"""
 | 
						||
 | 
						||
import streamlit as st
 | 
						||
st.set_page_config(
 | 
						||
    page_title="Chat",
 | 
						||
    layout='wide'
 | 
						||
)
 | 
						||
 | 
						||
choose_load_method = 1  # 选择加载模型的方式
 | 
						||
 | 
						||
if choose_load_method == 0:
 | 
						||
    # 默认加载(需要13G显存)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_model_chatglm3():
 | 
						||
        from transformers import AutoModel, AutoTokenizer
 | 
						||
        tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
 | 
						||
        model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k",trust_remote_code=True).half().cuda()
 | 
						||
        model = model.eval()
 | 
						||
        return  model, tokenizer
 | 
						||
    model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
 | 
						||
 | 
						||
elif choose_load_method == 1:
 | 
						||
    # 量化加载(需要6G显存)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_model_chatglm3():
 | 
						||
        from transformers import AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM
 | 
						||
        tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
 | 
						||
        nf4_config = BitsAndBytesConfig(
 | 
						||
            load_in_4bit=True,
 | 
						||
            bnb_4bit_quant_type="nf4",
 | 
						||
        )
 | 
						||
        model = AutoModelForCausalLM.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True, quantization_config=nf4_config)
 | 
						||
        model = model.eval()
 | 
						||
        return  model, tokenizer
 | 
						||
    model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
 | 
						||
 | 
						||
elif choose_load_method == 2:
 | 
						||
    # 在CPU上加载(需要25G内存,对话速度会比较慢,不推荐)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_model_chatglm3():
 | 
						||
        from transformers import AutoModel, AutoTokenizer
 | 
						||
        tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
 | 
						||
        model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k",trust_remote_code=True).float()
 | 
						||
        model = model.eval()
 | 
						||
        return  model, tokenizer
 | 
						||
    model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
 | 
						||
 | 
						||
with st.sidebar:
 | 
						||
    with st.expander('参数', expanded=True):
 | 
						||
        max_length = 409600
 | 
						||
        top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
 | 
						||
        temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session') 
 | 
						||
        def reset_parameter():
 | 
						||
            st.session_state['top_p_session'] = 0.8
 | 
						||
            st.session_state['temperature_session'] = 0.8
 | 
						||
        reset_parameter_button = st.button('重置', on_click=reset_parameter)
 | 
						||
 | 
						||
prompt = st.chat_input("在这里输入您的命令")
 | 
						||
 | 
						||
def chat_response_chatglm3(prompt):
 | 
						||
    history, past_key_values = st.session_state.history_ChatGLM3, st.session_state.past_key_values_ChatGLM3
 | 
						||
    for response, history, past_key_values in model_chatglm3.stream_chat(tokenizer_chatglm3, prompt, history,
 | 
						||
                                                                past_key_values=past_key_values,
 | 
						||
                                                                max_length=max_length, top_p=top_p,
 | 
						||
                                                                temperature=temperature,
 | 
						||
                                                                return_past_key_values=True):
 | 
						||
        message_placeholder_chatglm3.markdown(response)
 | 
						||
        if stop_button:
 | 
						||
            break
 | 
						||
    st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
 | 
						||
    st.session_state.history_ChatGLM3 = history
 | 
						||
    st.session_state.past_key_values_ChatGLM3 = past_key_values
 | 
						||
    return response
 | 
						||
 | 
						||
def clear_all():
 | 
						||
    st.session_state.history_ChatGLM3 = []
 | 
						||
    st.session_state.past_key_values_ChatGLM3 = None
 | 
						||
    st.session_state.ai_response = []
 | 
						||
 | 
						||
if 'history_ChatGLM3' not in st.session_state:
 | 
						||
    st.session_state.history_ChatGLM3 = []
 | 
						||
if 'past_key_values_ChatGLM3' not in st.session_state:
 | 
						||
    st.session_state.past_key_values_ChatGLM3 = None
 | 
						||
if 'ai_response' not in st.session_state:
 | 
						||
    st.session_state.ai_response = []
 | 
						||
 | 
						||
for ai_response in st.session_state.ai_response:
 | 
						||
    with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
 | 
						||
        st.markdown(ai_response["content"])
 | 
						||
 | 
						||
prompt_placeholder = st.chat_message("user", avatar='user')
 | 
						||
with st.chat_message("robot", avatar="assistant"):
 | 
						||
    message_placeholder_chatglm3 = st.empty()
 | 
						||
 | 
						||
if prompt:
 | 
						||
    prompt_placeholder.markdown(prompt)
 | 
						||
    st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
 | 
						||
    stop = st.empty()
 | 
						||
    stop_button = stop.button('停止', key='break_response')
 | 
						||
    chat_response_chatglm3(prompt)
 | 
						||
    stop.empty()
 | 
						||
button_clear = st.button("清空", on_click=clear_all, key='clear') |