112 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
This code is supported by the website: https://www.guanjihuan.com
 | 
						||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
 | 
						||
"""
 | 
						||
 | 
						||
import streamlit as st
 | 
						||
st.set_page_config(
 | 
						||
    page_title="Chat",
 | 
						||
    layout='wide'
 | 
						||
)
 | 
						||
 | 
						||
@st.cache_resource
 | 
						||
def load_model_internlm_7B():
 | 
						||
    # internlm(需要 7G 显存)
 | 
						||
    import torch
 | 
						||
    from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
 | 
						||
    nf4_config = BitsAndBytesConfig(
 | 
						||
        load_in_4bit=True,
 | 
						||
        bnb_4bit_quant_type="nf4",
 | 
						||
    )
 | 
						||
    model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, quantization_config=nf4_config)
 | 
						||
    tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, torch_dtype=torch.bfloat16)
 | 
						||
    model = model.eval()
 | 
						||
    return model, tokenizer
 | 
						||
model_internlm_7B, tokenizer_internlm_7B = load_model_internlm_7B()
 | 
						||
 | 
						||
with st.sidebar:
 | 
						||
    with st.expander('参数', expanded=True):
 | 
						||
        max_length = 409600
 | 
						||
        top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
 | 
						||
        temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session') 
 | 
						||
        def reset_parameter():
 | 
						||
            st.session_state['top_p_session'] = 0.8
 | 
						||
            st.session_state['temperature_session'] = 0.8
 | 
						||
        reset_parameter_button = st.button('重置', on_click=reset_parameter)
 | 
						||
 | 
						||
prompt = st.chat_input("在这里输入您的命令")
 | 
						||
 | 
						||
from tools.transformers.interface import GenerationConfig, generate_interactive
 | 
						||
 | 
						||
def prepare_generation_config():
 | 
						||
    generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
 | 
						||
    return generation_config
 | 
						||
 | 
						||
def combine_history(prompt, messages):
 | 
						||
    total_prompt = ""
 | 
						||
    for message in messages:
 | 
						||
        cur_content = message["content"]
 | 
						||
        if message["role"] == "user":
 | 
						||
            cur_prompt = user_prompt.replace("{user}", cur_content)
 | 
						||
        elif message["role"] == "robot":
 | 
						||
            cur_prompt = robot_prompt.replace("{robot}", cur_content)
 | 
						||
        else:
 | 
						||
            raise RuntimeError
 | 
						||
        total_prompt += cur_prompt
 | 
						||
    total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt)
 | 
						||
    return total_prompt
 | 
						||
 | 
						||
user_prompt = "<|User|>:{user}<eoh>\n"
 | 
						||
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
 | 
						||
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:"
 | 
						||
generation_config = prepare_generation_config()
 | 
						||
 | 
						||
if "messages_internlm_7B" not in st.session_state:
 | 
						||
    st.session_state.messages_internlm_7B = []
 | 
						||
 | 
						||
from dataclasses import asdict
 | 
						||
 | 
						||
def chat_response_internlm_7B(prompt):
 | 
						||
    real_prompt = combine_history(prompt, messages = st.session_state.messages_internlm_7B)
 | 
						||
    st.session_state.messages_internlm_7B.append({"role": "user", "content": prompt, "avatar": 'user'})
 | 
						||
    for cur_response in generate_interactive(
 | 
						||
        model=model_internlm_7B,
 | 
						||
        tokenizer=tokenizer_internlm_7B,
 | 
						||
        prompt=real_prompt,
 | 
						||
        additional_eos_token_id=103028,
 | 
						||
        **asdict(generation_config),
 | 
						||
    ):
 | 
						||
        message_placeholder_internlm_7B.markdown(cur_response + "▌")
 | 
						||
        if stop_button:
 | 
						||
            break
 | 
						||
    message_placeholder_internlm_7B.markdown(cur_response)
 | 
						||
    st.session_state.messages_internlm_7B.append({"role": "robot", "content": cur_response, "avatar": "assistant"})
 | 
						||
    st.session_state.ai_response.append({"role": "robot", "content": cur_response, "avatar": "assistant"})
 | 
						||
    return cur_response
 | 
						||
 | 
						||
 | 
						||
def clear_all():
 | 
						||
    st.session_state.messages_internlm_7B = []
 | 
						||
    st.session_state.ai_response = []
 | 
						||
 | 
						||
if 'messages_internlm_7B' not in st.session_state:
 | 
						||
    st.session_state.messages_internlm_7B = []
 | 
						||
if 'ai_response' not in st.session_state:
 | 
						||
    st.session_state.ai_response = []
 | 
						||
 | 
						||
for ai_response in st.session_state.ai_response:
 | 
						||
    with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
 | 
						||
        st.markdown(ai_response["content"])
 | 
						||
 | 
						||
prompt_placeholder = st.chat_message("user", avatar='user')
 | 
						||
with st.chat_message("robot", avatar="assistant"):
 | 
						||
    message_placeholder_internlm_7B = st.empty()
 | 
						||
 | 
						||
if prompt:
 | 
						||
    prompt_placeholder.markdown(prompt)
 | 
						||
    st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
 | 
						||
    stop = st.empty()
 | 
						||
    stop_button = stop.button('停止', key='break_response')
 | 
						||
    chat_response_internlm_7B(prompt)
 | 
						||
    stop.empty()
 | 
						||
button_clear = st.button("清空", on_click=clear_all, key='clear') |