165 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			165 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import argparse
 | |
| import json
 | |
| import os.path as osp
 | |
| from pathlib import Path
 | |
| 
 | |
| import numpy as np
 | |
| import sentencepiece as spm
 | |
| from tqdm import tqdm
 | |
| 
 | |
| 
 | |
| def process(dataset_path, sp_model):
 | |
|     """Process data sample from input dataset
 | |
| 
 | |
|     Args:
 | |
|         dataset_path (str): Path of dataset json file.
 | |
|         sp_model (str): Path of tokenizer.
 | |
| 
 | |
|     Yields:
 | |
|         tuple: dumped processed data sample and length of tokens.
 | |
|     """
 | |
| 
 | |
|     dataset = json.load(open(dataset_path))
 | |
| 
 | |
|     for data in dataset:
 | |
|         yield tokenize(get_chat_format_data(data), sp_model)
 | |
| 
 | |
| 
 | |
| def get_chat_format_data(ori_data):
 | |
|     """Format original data
 | |
| 
 | |
|     Args:
 | |
|         ori_data (dict): input data sample.
 | |
| 
 | |
|     Returns:
 | |
|         dict: data sample with chat format.
 | |
|     """
 | |
|     input_str = ori_data["input"]
 | |
|     instruction_str = ori_data["instruction"]
 | |
|     output_str = ori_data["output"]
 | |
|     data = dict()
 | |
|     if input_str != "":
 | |
|         data["user"] = f"<|User|>:{instruction_str}\n{input_str}"
 | |
|     else:
 | |
|         data["user"] = f"<|User|>:{instruction_str}"
 | |
|     data["bot"] = f"<|Bot|>:{output_str}"
 | |
|     return data
 | |
| 
 | |
| 
 | |
| def tokenize(sample, sp_model):
 | |
|     """Tokenize input dataset
 | |
| 
 | |
|     Args:
 | |
|         sample (dict): Input data sample.
 | |
|         sp_model (str): Path of tokenizer.
 | |
| 
 | |
|     Returns:
 | |
|         tuple: dumped processed data sample and length of tokens.
 | |
|     """
 | |
|     special_tokens_map = {"<eoh>": 103167, "<eoa>": 103166, "nl_id": 13}
 | |
|     token_ids = [sp_model.bos_id()]
 | |
|     human_s = sample["user"]
 | |
|     ass_s = sample["bot"]
 | |
| 
 | |
|     human_ids = sp_model.encode(human_s) + [special_tokens_map["<eoh>"], special_tokens_map["nl_id"]]
 | |
|     human_ids_ignore = [-token_id for token_id in human_ids]
 | |
| 
 | |
|     ass_template_ids = sp_model.encode("<|Bot|>:")
 | |
|     ass_template_ids_ignore = [-token_ids for token_ids in ass_template_ids]
 | |
|     ass_ids = (
 | |
|         ass_template_ids_ignore
 | |
|         + sp_model.encode(ass_s[8:])
 | |
|         + [special_tokens_map["<eoa>"], special_tokens_map["nl_id"]]
 | |
|     )
 | |
| 
 | |
|     token_ids += human_ids_ignore + ass_ids
 | |
|     if len(token_ids) > 2047:
 | |
|         token_ids = token_ids[:2047]
 | |
|     token_ids += [sp_model.eos_id()]
 | |
|     line = str.encode(json.dumps({"tokens": token_ids}) + "\n")
 | |
|     return line, len(token_ids)
 | |
| 
 | |
| 
 | |
| def dump_bin_meta_bin(samples, path, split_ratio=0.1):
 | |
|     """Dump processed dataset
 | |
| 
 | |
|     Args:
 | |
|         samples (dict): Input data sample.
 | |
|         path (str): Path for output dataset.
 | |
|         split_ratio (float): Ratio for validation dataset splitting.
 | |
|             Default to: 0.1.
 | |
| 
 | |
|     Returns:
 | |
|         tuple: number of train/valid tokens of processed dataset,
 | |
|             number of train/valid samples of processed dataset.
 | |
|     """
 | |
| 
 | |
|     train_path = osp.join(path, "train/en/")
 | |
|     valid_path = osp.join(path, "valid/en/")
 | |
|     train_dir = Path(train_path)
 | |
|     valid_dir = Path(valid_path)
 | |
|     train_dir.mkdir(exist_ok=True, parents=True)
 | |
|     valid_dir.mkdir(exist_ok=True, parents=True)
 | |
|     train_f = open(train_dir.joinpath("dataset.bin"), "wb")
 | |
|     valid_f = open(valid_dir.joinpath("dataset.bin"), "wb")
 | |
| 
 | |
|     train_tokens = 0
 | |
|     valid_tokens = 0
 | |
|     last_train_position = 0
 | |
|     last_valid_position = 0
 | |
|     train_samples = 0
 | |
|     valid_samples = 0
 | |
|     train_meta = []
 | |
|     valid_meta = []
 | |
| 
 | |
|     sample_length = len(samples)
 | |
|     np.random.seed(0)
 | |
|     valid_indices = np.random.choice(range(sample_length), int(sample_length * split_ratio)).tolist()
 | |
| 
 | |
|     count = -1
 | |
|     for line, token_num in samples:
 | |
|         count += 1
 | |
|         if count in valid_indices:
 | |
|             valid_tokens += token_num
 | |
|             valid_f.write(line)
 | |
|             valid_meta.append((last_valid_position, token_num))
 | |
|             last_valid_position += len(line)
 | |
|             valid_samples += 1
 | |
|         else:
 | |
|             train_tokens += token_num
 | |
|             train_f.write(line)
 | |
|             train_meta.append((last_train_position, token_num))
 | |
|             last_train_position += len(line)
 | |
|             train_samples += 1
 | |
| 
 | |
|     train_f.close()
 | |
|     valid_f.close()
 | |
|     np.save(open(train_dir.joinpath("dataset.bin.meta"), "wb"), train_meta)
 | |
|     np.save(open(valid_dir.joinpath("dataset.bin.meta"), "wb"), valid_meta)
 | |
| 
 | |
|     return train_tokens, valid_tokens, train_samples, valid_samples
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument("dataset_path", type=str, help="path of dataset json file")
 | |
|     parser.add_argument("output_path", type=str, help="path of processed dataset")
 | |
|     parser.add_argument("tokenizer_path", type=str, help="path of tokenizer")
 | |
|     parser.add_argument("--split_ratio", type=float, default=0.1, help="ratio for validation dataset splitting")
 | |
| 
 | |
|     args = parser.parse_args()
 | |
|     sp_model = spm.SentencePieceProcessor(model_file=args.tokenizer_path)
 | |
|     split_ratio = args.split_ratio
 | |
|     samples = []
 | |
| 
 | |
|     dataset = process(args.dataset_path, sp_model)
 | |
|     for sample in tqdm(dataset):
 | |
|         samples.append(sample)
 | |
| 
 | |
|     train_tokens, valid_tokens, train_samples, valid_samples = dump_bin_meta_bin(
 | |
|         samples, args.output_path, args.split_ratio
 | |
|     )
 | |
|     print(f"number of train dataset: {train_samples}, number of train dataset token: {train_tokens}")
 | |
|     print(f"number of validation dataset: {valid_samples}, number of validation dataset token: {valid_tokens}")
 |