106 lines
2.9 KiB
Python
106 lines
2.9 KiB
Python
"""
|
|
This code is supported by the website: https://www.guanjihuan.com
|
|
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/45275
|
|
"""
|
|
|
|
import numpy as np
|
|
import time
|
|
import sys
|
|
from numba import jit
|
|
|
|
n_array = np.concatenate((np.arange(1000, 10000, 1000), np.arange(10000, 40000, 10000)))
|
|
print(f'n_array={n_array}\n')
|
|
|
|
@jit
|
|
def numba_test(C, n):
|
|
for i0 in range(n):
|
|
for j0 in range(n):
|
|
C[i0, j0] = np.random.rand()
|
|
return C
|
|
|
|
for n in n_array:
|
|
print(f'n={n}')
|
|
|
|
A = np.random.rand(n, n)
|
|
B = np.random.rand(n, n)
|
|
C = np.random.rand(n, n)
|
|
|
|
# 矩阵占用内存
|
|
size = sys.getsizeof(C)
|
|
print(f'矩阵占用内存: {size/(1024*1024):.2f} MB')
|
|
|
|
# 矩阵的迹
|
|
start_time = time.time()
|
|
trace_A = np.trace(A)
|
|
trace_time = time.time() - start_time
|
|
print(f"矩阵的迹时间: {trace_time:.3f} 秒")
|
|
|
|
# 矩阵转置
|
|
start_time = time.time()
|
|
A_T = A.T
|
|
transpose_time = time.time() - start_time
|
|
print(f"矩阵转置时间: {transpose_time:.3f} 秒")
|
|
|
|
# 矩阵加法
|
|
start_time = time.time()
|
|
C = A + B
|
|
add_time = time.time() - start_time
|
|
print(f"矩阵加法时间: {add_time:.3f} 秒")
|
|
|
|
# numba for 循环赋值
|
|
start_time = time.time()
|
|
numba_test(C, n)
|
|
create_time = time.time() - start_time
|
|
print(f"numba for 循环赋值时间: {create_time:.3f} 秒")
|
|
|
|
# 矩阵创建
|
|
start_time = time.time()
|
|
C = np.random.rand(n, n)
|
|
create_time = time.time() - start_time
|
|
print(f"矩阵创建时间: {create_time:.3f} 秒")
|
|
|
|
# for 循环赋值
|
|
start_time = time.time()
|
|
for i0 in range(n):
|
|
for j0 in range(n):
|
|
C[i0, j0] = np.random.rand()
|
|
create_time = time.time() - start_time
|
|
print(f"for 循环赋值时间: {create_time:.3f} 秒")
|
|
|
|
# 矩阵行列式
|
|
start_time = time.time()
|
|
det_A = np.linalg.det(A)
|
|
det_time = time.time() - start_time
|
|
print(f"矩阵行列式时间: {det_time:.2f} 秒")
|
|
|
|
# 矩阵乘法
|
|
start_time = time.time()
|
|
C = np.dot(A, B)
|
|
multiply_time = time.time() - start_time
|
|
print(f"矩阵乘法时间: {multiply_time:.3f} 秒")
|
|
|
|
# 矩阵求逆
|
|
start_time = time.time()
|
|
inv_A = np.linalg.inv(A)
|
|
inv_time = time.time() - start_time
|
|
print(f"矩阵求逆时间: {inv_time:.3f} 秒")
|
|
|
|
# 矩阵的秩
|
|
start_time = time.time()
|
|
rank_A = np.linalg.matrix_rank(A)
|
|
rank_time = time.time() - start_time
|
|
print(f"矩阵的秩时间: {rank_time:.3f} 秒")
|
|
|
|
# 矩阵的特征值
|
|
start_time = time.time()
|
|
eigenvalues_A = np.linalg.eigvals(A)
|
|
eigen_time = time.time() - start_time
|
|
print(f"矩阵特征值时间: {eigen_time:.3f} 秒")
|
|
|
|
# 矩阵的特征值和特征向量
|
|
start_time = time.time()
|
|
eigenvalues_A, eigenvector_A = np.linalg.eig(A)
|
|
eigen_time = time.time() - start_time
|
|
print(f"矩阵特征值和特征向量时间: {eigen_time:.3f} 秒")
|
|
|
|
print() |