update
This commit is contained in:
parent
4690515bd2
commit
0500442f42
@ -1,7 +0,0 @@
|
||||
import guan
|
||||
import numpy as np
|
||||
|
||||
k_array = np.linspace(-np.pi, np.pi, 100)
|
||||
hamiltonian_function = guan.one_dimensional_fourier_transform_with_k(unit_cell=0, hopping=1) # one dimensional chain
|
||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_function)
|
||||
guan.plot(k_array, eigenvalue_array, xlabel='k', ylabel='E', style='-k')
|
@ -1,5 +0,0 @@
|
||||
import guan
|
||||
|
||||
print('\n', guan.hamiltonian_of_finite_size_system_along_one_direction(3), '\n')
|
||||
print(guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(2, 2), '\n')
|
||||
print(guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(2, 2, 2), '\n')
|
@ -1,11 +0,0 @@
|
||||
import guan
|
||||
import numpy as np
|
||||
from math import *
|
||||
|
||||
chern_number = guan.calculate_chern_number_for_square_lattice_with_efficient_method(guan.hamiltonian_of_one_QAH_model, precision=100)
|
||||
print('\nChern number=', chern_number, '\n')
|
||||
|
||||
wilson_loop_array = guan.calculate_wilson_loop(guan.hamiltonian_of_ssh_model)
|
||||
print('Wilson loop =', wilson_loop_array)
|
||||
p = np.log(wilson_loop_array)/2/pi/1j
|
||||
print('\np =', p, '\n')
|
@ -1,11 +0,0 @@
|
||||
import guan
|
||||
import numpy as np
|
||||
|
||||
fermi_energy_array = np.linspace(-4, 4, 400)
|
||||
h00 = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
|
||||
h01 = np.identity(4)
|
||||
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01)
|
||||
guan.plot(fermi_energy_array, conductance_array, xlabel='E', ylabel='Conductance', style='-')
|
||||
|
||||
fermi_energy = 0
|
||||
guan.print_or_write_scattering_matrix(fermi_energy, h00, h01)
|
@ -1,30 +0,0 @@
|
||||
import guan
|
||||
import numpy as np
|
||||
|
||||
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(2,2)
|
||||
fermi_energy_array = np.linspace(-4, 4, 400)
|
||||
total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.1)
|
||||
guan.plot(fermi_energy_array, total_dos_array, xlabel='E', ylabel='Total DOS', style='-')
|
||||
|
||||
fermi_energy = 0
|
||||
N1 = 3
|
||||
N2 = 4
|
||||
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1,N2)
|
||||
LDOS = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2)
|
||||
print('square lattice:\n', LDOS, '\n')
|
||||
h00 = guan.hamiltonian_of_finite_size_system_along_one_direction(N2)
|
||||
h01 = np.identity(N2)
|
||||
LDOS = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00=h00, h01=h01, N2=N2, N1=N1)
|
||||
print(LDOS, '\n\n')
|
||||
# guan.plot_contour(range(N1), range(N2), LDOS)
|
||||
|
||||
N1 = 3
|
||||
N2 = 4
|
||||
N3 = 5
|
||||
hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3)
|
||||
LDOS = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2, N3=N3)
|
||||
print('cubic lattice:\n', LDOS, '\n')
|
||||
h00 = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N2, N3)
|
||||
h01 = np.identity(N2*N3)
|
||||
LDOS = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3=N3, N2=N2, N1=N1)
|
||||
print(LDOS)
|
@ -1,9 +0,0 @@
|
||||
import numpy as np
|
||||
import guan
|
||||
|
||||
cpus = 4
|
||||
parameter_array_all = np.arange(0, 17, 1)
|
||||
for task_index in range(cpus):
|
||||
parameter_array = guan.preprocess_for_parallel_calculations(parameter_array_all, cpus, task_index)
|
||||
print(parameter_array)
|
||||
print()
|
@ -1,22 +0,0 @@
|
||||
import numpy as np
|
||||
import cmath
|
||||
import guan
|
||||
|
||||
# Example 1
|
||||
vector = np.array([np.sqrt(0.5), np.sqrt(0.5)])*cmath.exp(np.random.uniform(0, 1)*1j)
|
||||
print('\nExample 1\n', vector)
|
||||
print(np.dot(vector.transpose().conj(), vector), '\n')
|
||||
|
||||
vector = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.001)
|
||||
print(vector)
|
||||
print(np.dot(vector.transpose().conj(), vector), '\n')
|
||||
|
||||
|
||||
# Example 2
|
||||
vector = np.array([1, 0])*cmath.exp(np.random.uniform(0, 1)*1j)
|
||||
print('\nExample 2\n', vector)
|
||||
print(np.dot(vector.transpose().conj(), vector), '\n')
|
||||
|
||||
vector = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.001)
|
||||
print(vector)
|
||||
print(np.dot(vector.transpose().conj(), vector), '\n')
|
@ -1,16 +0,0 @@
|
||||
import guan
|
||||
import numpy as np
|
||||
|
||||
x_array = np.array([1, 2, 3])
|
||||
y_array = np.array([5, 6, 7])
|
||||
guan.write_one_dimensional_data(x_array, y_array, filename='one_dimensional_data')
|
||||
matrix = np.zeros((3, 3))
|
||||
matrix[0, 1] = 11
|
||||
guan.write_two_dimensional_data(x_array, y_array, matrix, filename='two_dimensional_data')
|
||||
x_read, y_read = guan.read_one_dimensional_data('one_dimensional_data')
|
||||
print(x_read, '\n')
|
||||
print(y_read, '\n\n')
|
||||
x_read, y_read, matrix_read = guan.read_two_dimensional_data('two_dimensional_data')
|
||||
print(x_read, '\n')
|
||||
print(y_read, '\n')
|
||||
print(matrix_read)
|
@ -1,8 +0,0 @@
|
||||
import guan
|
||||
import numpy as np
|
||||
|
||||
k_array = np.linspace(-np.pi, np.pi, 100)
|
||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, guan.hamiltonian_of_square_lattice_in_quasi_one_dimension)
|
||||
guan.plot(k_array, eigenvalue_array, xlabel='k', ylabel='E', style='-k')
|
||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension)
|
||||
guan.plot(k_array, eigenvalue_array, xlabel='k', ylabel='E', style='-k')
|
@ -1,44 +0,0 @@
|
||||
import guan
|
||||
|
||||
guan.test()
|
||||
sigma_0 = guan.sigma_0()
|
||||
sigma_x = guan.sigma_x()
|
||||
sigma_y = guan.sigma_y()
|
||||
sigma_z = guan.sigma_z()
|
||||
sigma_00 = guan.sigma_00()
|
||||
sigma_0x = guan.sigma_0x()
|
||||
sigma_0y = guan.sigma_0y()
|
||||
sigma_0z = guan.sigma_0z()
|
||||
sigma_x0 = guan.sigma_x0()
|
||||
sigma_xx = guan.sigma_xx()
|
||||
sigma_xy = guan.sigma_xy()
|
||||
sigma_xz = guan.sigma_xz()
|
||||
sigma_y0 = guan.sigma_y0()
|
||||
sigma_yx = guan.sigma_yx()
|
||||
sigma_yy = guan.sigma_yy()
|
||||
sigma_yz = guan.sigma_yz()
|
||||
sigma_z0 = guan.sigma_z0()
|
||||
sigma_zx = guan.sigma_zx()
|
||||
sigma_zy = guan.sigma_zy()
|
||||
sigma_zz = guan.sigma_zz()
|
||||
print('Pauli matrix\n')
|
||||
print('sigma_0\n', sigma_0, '\n')
|
||||
print('sigma_x\n', sigma_x, '\n')
|
||||
print('sigma_y\n', sigma_y, '\n')
|
||||
print('sigma_z\n', sigma_z, '\n')
|
||||
print('sigma_00\n', sigma_00, '\n')
|
||||
print('sigma_0x\n', sigma_0x, '\n')
|
||||
print('sigma_0y\n', sigma_0y, '\n')
|
||||
print('sigma_0z\n', sigma_0z, '\n')
|
||||
print('sigma_x0\n', sigma_x0, '\n')
|
||||
print('sigma_xx\n', sigma_xx, '\n')
|
||||
print('sigma_xy\n', sigma_xy, '\n')
|
||||
print('sigma_xz\n', sigma_xz, '\n')
|
||||
print('sigma_y0\n', sigma_y0, '\n')
|
||||
print('sigma_yx\n', sigma_yx, '\n')
|
||||
print('sigma_yy\n', sigma_yy, '\n')
|
||||
print('sigma_yz\n', sigma_yz, '\n')
|
||||
print('sigma_z0\n', sigma_z0, '\n')
|
||||
print('sigma_zx\n', sigma_zx, '\n')
|
||||
print('sigma_zy\n', sigma_zy, '\n')
|
||||
print('sigma_zz\n', sigma_zz, '\n')
|
Loading…
x
Reference in New Issue
Block a user