0.0.143
This commit is contained in:
		| @@ -1,7 +1,7 @@ | |||||||
| [metadata] | [metadata] | ||||||
| # replace with your username: | # replace with your username: | ||||||
| name = guan | name = guan | ||||||
| version = 0.0.142 | version = 0.0.143 | ||||||
| author = guanjihuan | author = guanjihuan | ||||||
| author_email = guanjihuan@163.com | author_email = guanjihuan@163.com | ||||||
| description = An open source python package | description = An open source python package | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| Metadata-Version: 2.1 | Metadata-Version: 2.1 | ||||||
| Name: guan | Name: guan | ||||||
| Version: 0.0.142 | Version: 0.0.143 | ||||||
| Summary: An open source python package | Summary: An open source python package | ||||||
| Home-page: https://py.guanjihuan.com | Home-page: https://py.guanjihuan.com | ||||||
| Author: guanjihuan | Author: guanjihuan | ||||||
|   | |||||||
| @@ -2,7 +2,7 @@ | |||||||
|  |  | ||||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||||
|  |  | ||||||
| # The current version is guan-0.0.142, updated on December 10, 2022. | # The current version is guan-0.0.143, updated on December 10, 2022. | ||||||
|  |  | ||||||
| # Installation: pip install --upgrade guan | # Installation: pip install --upgrade guan | ||||||
|  |  | ||||||
| @@ -1569,46 +1569,46 @@ def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenera | |||||||
|             eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) |             eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) | ||||||
|             dim = len(index_of_bands) |             dim = len(index_of_bands) | ||||||
|             det_value = 1 |             det_value = 1 | ||||||
|             # first dot |             # first dot product | ||||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|             i0 = 0 |             i0 = 0 | ||||||
|             for dim1 in index_of_bands: |             for dim1 in index_of_bands: | ||||||
|                 j0 = 0 |                 j0 = 0 | ||||||
|                 for dim2 in index_of_bands: |                 for dim2 in index_of_bands: | ||||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) |                     dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) | ||||||
|                     j0 += 1 |                     j0 += 1 | ||||||
|                 i0 += 1 |                 i0 += 1 | ||||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|             det_value = det_value*dot_matrix |             det_value = det_value*dot_matrix | ||||||
|             # second dot |             # second dot product | ||||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|             i0 = 0 |             i0 = 0 | ||||||
|             for dim1 in index_of_bands: |             for dim1 in index_of_bands: | ||||||
|                 j0 = 0 |                 j0 = 0 | ||||||
|                 for dim2 in index_of_bands: |                 for dim2 in index_of_bands: | ||||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) |                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) | ||||||
|                     j0 += 1 |                     j0 += 1 | ||||||
|                 i0 += 1 |                 i0 += 1 | ||||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|             det_value = det_value*dot_matrix |             det_value = det_value*dot_matrix | ||||||
|             # third dot |             # third dot product | ||||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|             i0 = 0 |             i0 = 0 | ||||||
|             for dim1 in index_of_bands: |             for dim1 in index_of_bands: | ||||||
|                 j0 = 0 |                 j0 = 0 | ||||||
|                 for dim2 in index_of_bands: |                 for dim2 in index_of_bands: | ||||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) |                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) | ||||||
|                     j0 += 1 |                     j0 += 1 | ||||||
|                 i0 += 1 |                 i0 += 1 | ||||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|             det_value = det_value*dot_matrix |             det_value = det_value*dot_matrix | ||||||
|             # four dot |             # four dot product | ||||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|             i0 = 0 |             i0 = 0 | ||||||
|             for dim1 in index_of_bands: |             for dim1 in index_of_bands: | ||||||
|                 j0 = 0 |                 j0 = 0 | ||||||
|                 for dim2 in index_of_bands: |                 for dim2 in index_of_bands: | ||||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) |                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) | ||||||
|                     j0 += 1 |                     j0 += 1 | ||||||
|                 i0 += 1 |                 i0 += 1 | ||||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user